PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of complex game-tree structures for the Hsu graph in the analysis of automatic transmission gearboxes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article was discussed the possibility of structures and information systems complex game trees for the analysis of automatic gearboxes. The purpose of modelling an automatic gearbox with graphs can be versatile, namely: determining the transmission ratio of individual gears, analysing the speed and acceleration of individual rotating elements. In a further step, logic tree-decision methods can be used to analyse functional schemes of selected transmission gears. Instead, for graphs that are models of transmission, parametrically acting tree structures can be used. This allows for the generalization and extension of the algorithmic approach, furthermore in the future it will allow further analyses and syntheses, such as checking the isomorphism of the proposed solutions, determining the validity of construction and / or operating parameters of the analysed gears. The game tree structure describes a space of possible solutions in order to find optimum objective functions. There is the connection with other graphical structures which can be graphs in another sense, or even decision trees with node and/or branch coding.
Rocznik
Strony
96--113
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Opole University of Technology, Faculty of Production Engineering and Logistics, Opole, Poland
  • Opole University of Technology, Faculty of Production Engineering and Logistics, Opole, Poland
Bibliografia
  • [1] ZAWISLAK S., 2012, The Graph-based Methodology as an Artificial Intelligence Aid for Mechanical Engineering Design, Wydawnictwo Akademii Techniczno-Humanistycznej Bielsko-Biała.
  • [2] DREWNIAK J., ZAWIŚLAK S., 2010, Graph methods in kinematical analysis of multi-speed epicyclic gears, Inter. J. Appl. Mech. Eng., 17/3, 791-798.
  • [3] DREWNIAK J., ZAWIŚLAK S., 2009, Kinematical and dynamical analysis of closed kinematic chains using graphs and contour equations, PAMM, 9/1, 547-548.
  • [4] WOJNAROWSKI J., 1986, Graphs and structural numbers as models of mechanical systems, Gliwice, (in Polish).
  • [5] UEMATSU S., 1997, An application of graph theory to the kinematic analysis of planetary gear trains, Inter. J. Japan Soc. Precis. Eng., 31, 141-146.
  • [6] DEPTUŁA A., 2014, Application of multi-valued weighting logical functions in the analysis of a degree of importance of construction parameters on the example of hydraulic valves, Inter. J. Appl. Mech. Eng., 19/3, 539-548.
  • [7] PARTYKA M.A., 1999, Quine-McCluskey algorithm to minimize individual partial multi-valued logic functions, St. i Monog., 109, Polit. Opol., Opole, (in Polish).
  • [8] BERGHOFER S, REITER M, 2009, Theorem Proving in Higher Order Logics, LNCS, 5674, 147-163.
  • [9] DEPTUŁA A., OSIŃSKI P., PARTYKA M.A., 2013, Discrete optimization of a gear pump after tooth root undercutting by means of multi-valued logic trees, Arch. Civ. Mech. Eng, 13/4. 422-431.
  • [10] HARARY F., 1969, Graph theory, Addison-Wesley, Reading, Mass.
  • [11] KORZAN B., 1978, Elements of graph theory and networks – methods and applications, WNT, Warszawa, (in Polish).
  • [12] PIJLS W., DE BRUIN A., 2001, Game tree algorithms and solution trees, Theoretical Computer Science, 252/ 1-2, 197-215.
  • [13] DEPTUŁA A., ZAWIŚLAK S., PARTYKA M.A., 2017, Application of decision logic trees and dependence graphs in analysis of automatic transmission gearboxes, Autobusy – Technika, Eksploatacja, Systemy Transportowe, 12, 808-814, (in Polish).
  • [14] DEPTUŁA A., PARTYKA M.A., 2018, Application of decision logical trees and predominant logical variables, Proceedings of the 14th International Scientific Conference, Computer Aided Engineering, Polanica-Zdrój.
  • [15] DEPTUŁA A., PARTYKA M.A., TISZBIEREK A., 2018, Application of decision logic trees and information systems in analysis of automatic transmission gearboxes, Inter. Conf. Przemysł 4.0, Komitet Budowy Maszyn PAN, Nowy Sącz, 21-24 May.
  • [16] KRON G., 1930, Generalized theory of electrical machinery, AIEE Transactions, 49, 666-683.
  • [17] HSU C.H., 1992, Graph notation and kinematic equations of motion of planetary gear trains, International J. of Vehicle Design, 13/3, 233-241.
  • [18] FREUDENSTEIN F., 1971, An application of Boolean algebra to the motion of epicyclic driver, ASME Journal of Engineering for Industry, B, 93, 176-182.
  • [19] HSU C.H, LAM K.T., LIN Y.L, 1994, Automatic synthesis of displacement for planetary gear trains, Math. Comput. Modelling, 19/11, 67-81.
  • [20] MARGHITU D., 2005 , Kinematic chains and machine components design, Elsevier Amsterdam, San Diego, Academic Press, London.
  • [21] DEPTUŁA A., DREWNIAK J., PARTYKA M.A., 2017, Application of dependence graphs and game trees in analysis of a planetary gear modelled with a contour graph, Machine Dynamics Research, 41/3.
  • [22] DEPTUŁA A., DREWNIAK J., PARTYKA M.A., 2017, Analysis of a planetary gear modeled with a contour graph taking into account the method of parametric play structures, Mechanik, 7, 640-642, (in Polish).
  • [23] DEPTUŁA A., DREWNIAK J., PARTYKA M.A., 2017, Analysis of a planetary gear modelled with a contour graph considering the decision making complexity of game-tree structures, II International Conference of Computational Methods in Engineering Science (CMES’17), Exploitation And Machine Building, ITM Web Conf. 15, 04002.
  • [24] HSU C.H., 2002, An analysis methodology for the kinematic synthesis of epicyclic gear mechanisms, ASME Journal of Mechanical Design, 124, 574-576.
  • [25] https://roadstars.mercedes-benz.com/en_GB/products/construction-transport/arocs/power/transmissions-gearshift.html
  • [26] CERVANTES-SANCHEZ J.J., RICO-MARTI´NEZ J.M., PANDURO-CALVARIO C., 2012, A general and systematic framework for the kinematic analysis of complex gear systems, Meccanica, 47/1, 3-21.
  • [27] TALPASANU I. SIMIONESCU P.A., 2012, Kinematic analysis of epicyclic bevel gear trains with matroid method, J. Mech. Des., 134/11, 1-8.
  • [28] DING H.F., ZHAO J., HUANG Z., 2009, Unified topological representation models of planar kinematic chains, J. Mech. Des., 131/11, 1-6.
  • [29] ESMAIL E.L., 2013, Nomographs and feasibility graphs for enumeration of Ravigneaux-type automatic transmissions, Adv. Mech. Eng., http://dx.doi.org/10.1155/2013/120324, 1-15.
  • [30] SALGADO D.R., DEL CASTILLO J.M., 2014, Analysis of the transmission ratio and efficiency ranges of the four-, five-, and six-link planetary gear trains, Mech. Mach. Theory, 73, 218-243.
  • [31] DEL PIO G., PENNESTRI E., VALENTINI P.P., 2013, Kinematic and power-flow analysis of bevel gears planetary gear trains with gyroscopic complexity, Mech. Mach. Theory, 70, 523-537.
  • [32] CHEN C., 2013, Power flow and efficiency analysis of epicyclic gear transmission with split power, Mech. Mach. Theory, 59, 96-106.
  • [33] HSU C.H., 1993, Graph representation for the structural synthesis of geared kinematic chains, Journal of the Franklin Institute, 330/1, 131-143.
  • [34] XUE H.L., LIU G., YANG X.H., 2016, A review of graph theory application research in gears. Proc. IMechE., Part C, J. Mechanical Engineering Science, 230/10, 1697-1714.
  • [35] HSU C.H., 2002, An analytic methodology for the kinematic synthesis of epicyclic gear mechanisms, J. Mech. Des, 124, 574-576.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f6b2748-8ddf-4b55-9b99-a9323c1f3059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.