PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Cluster Analysis to Assess the Wear Resistance of Cermet Coatings Sprayed by High Velocity Oxy-Fuel on Magnesium Alloy Substrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cermet coatings are one of the best surface protection of machine elements against wear. On the other hand, the most universal and economically justified method of applying such coatings is high velocity oxy-fuel (HVOF) spraying. This method makes it possible to produce coatings characterized by compact structure, low porosity and very good adhesion to the substrate. All these fundamental properties contribute to the high wear resistance of these coatings. However, carrying out full wear tests (e.g. ball-on-disc) is time-consuming, especially when it is necessary to select the proper feedstock material and carefully selected process parameters. The aim of the following researches was to statistically investigate the possibility of replacing long-term wear resistance tests with estimation of this performance on the basis of determining the fundamental mechanical properties of the coatings. Three types of coating materials were selected: WC-12Co, WC-10Co-4Cr and WC-20Cr3C2-7Ni, which were deposited on AZ31 magnesium alloy substrates from three different spray distances: 320, 360 and 400 mm. On the basis of the tests carried out and using cluster analysis techniques (the Ward and k-means methods), the relative similarity between the obtained coatings was determined. The applied methodology allowed to select from the analyzed cermet coatings such samples that were characterized by improved resistance to abrasive wear. The obtained results of the analyzes were also referred to the results of tests of resistance to abrasive wear.
Twórcy
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Łukasiewicza 5, 50-371 Wrocław, Poland
  • Department of Materials Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Basile V., Tregua M., Giacalone M. A three-level view of readiness models: Statistical and managerial insights on industry 4.0. Technology in Society 2024; 77: 102528. https://doi.org/10.1016/j.techsoc.2024.102528.
  • 2. Ghasemi A., Farajzadeh F., Heavey C., Fowler J., Papadopoulos C.T. Simulation optimization applied to production scheduling in the era of industry 4.0: A review and future roadmap. Journal of Industrial Information Integration 2024; 39: 100599. https://doi.org/10.1016/j.jii.2024.100599.
  • 3. Delke V., Schiele H., Buchholz W., Kelly S. Implementing Industry 4.0 technologies: Future roles in purchasing and supply management. Technological Forecasting and Social Change 2023; 196: 122847. https://doi.org/10.1016/j.techfore.2023.122847.
  • 4. Javaid M., Haleem A., Singh R.P., Sinha A.K. Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges. Green Technologies and Sustainability 2024; 2: 100083. https://doi.org/10.1016/j.grets.2024.100083.
  • 5. Kopeinig J., Woschank M., Olipp N. Industry 4.0 Technologies and their Implications for Environmental Sustainability in the Manufacturing Industry. Procedia Computer Science 2024; 232: 2777–89. https://doi.org/10.1016/j.procs.2024.02.095.
  • 6. Menezes P.L., Nosonovsky M., Ingole S.P., Kailas S.V., Lovell M.R., editors. Tribology for Scientists and Engineers: From Basics to Advanced Concepts. New York, NY: Springer New York; 2013. https://doi.org/10.1007/978-1-4614-1945-7.
  • 7. Bhushan B. Introduction to tribology. Second edition. Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc; 2013.
  • 8. Katiyar J.K, Rao T., Rani A.M.A., Sulaiman M.H., Davim J.P. Tribology in Sustainable Manufacturing. 1st ed. Boca Raton: CRC Press; 2023. https://doi.org/10.1201/9781003363576.
  • 9. Pawlowski L. The science and engineering of thermal spray coatings. Chichester, West Sussex: J. Wiley and sons; 2008.
  • 10. Dwivedi D.K. Surface Engineering. New Delhi: Springer India; 2018. https://doi.org/10.1007/978-81-322-3779-2.
  • 11. Fauchais P.L., Heberlein J.V.R., Boulos M.I. Thermal Spray Fundamentals. Boston, MA: Springer US; 2014. https://doi.org/10.1007/978-0-387-68991-3.
  • 12. Tejero-Martin D., Rezvani Rad M., McDonald A., Hussain T. Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings. J Therm Spray Tech 2019; 28: 598–644. https://doi.org/10.1007/s11666-019-00857-1.
  • 13. Berger L.-M. Application of hardmetals as thermal spray coatings. International Journal of Refractory Metals and Hard Materials 2015; 49: 350–64. https://doi.org/10.1016/j.ijrmhm.2014.09.029.
  • 14. Bhosale D.G., Rathod W.S., Rukhande S.W. Effect of counter faces on sliding wear behavior of WC-Cr3C2-Ni composite coating deposited by high velocity oxy fuel. Materials Today: Proceedings 2021; 41: 780–5. https://doi.org/10.1016/j.matpr.2020.08.466.
  • 15. Gren M.A., Wahnström G. Wetting of surfaces and grain boundaries in cemented carbides and the effect from local chemistry. Materialia 2019; 8: 100470. https://doi.org/10.1016/j.mtla.2019.100470.
  • 16. Ahmed R., Ali O., Berndt C.C., Fardan A. Sliding wear of conventional and suspension sprayed nanocomposite WC-Co coatings: An Invited Review. J Therm Spray Tech 2021; 30: 800–61. https://doi.org/10.1007/s11666-021-01185-z.
  • 17. Singh J., Vasudev H., Szala M., Gill H.S. Neural computing for erosion assessment in Al-20TiO2 HVOF thermal spray coating. Int J Interact Des Manuf 2023. https://doi.org/10.1007/s12008-023-01372-y.
  • 18. Singh N., Mehta A., Vasudev H., Samra P.S. A review on the design and analysis for the application of Wear and corrosion resistance coatings. Int J Interact Des Manuf 2023. https://doi.org/10.1007/s12008-023-01411-8.
  • 19. Ma H., Li D., Li J. Effect of spraying power on microstructure, corrosion and wear resistance of fe-based amorphous coatings. J Therm Spray Tech 2022; 31: 1683–94. https://doi.org/10.1007/s11666-022-01403-2.
  • 20. Dogan A., Birant D. Machine learning and data mining in manufacturing. Expert Systems with Applications 2021; 166: 114060. https://doi.org/10.1016/j.eswa.2020.114060.
  • 21. Capezza C., Centofanti F., Lepore A., Palumbo B. Functional clustering methods for resistance spot welding process data in the automotive industry. Appl Stoch Models Bus & Ind 2021; 37: 908–25. https://doi.org/10.1002/asmb.2648.
  • 22. Kujawińska A., Rogalewicz M., Muchowski M., Stańkowska M. Application of Cluster Analysis in Making Decision About Purchase of Additional Materials for Welding Process. In: Torres Guerrero F, Lozoya-Santos J, Gonzalez Mendivil E, NeiraTovar L, Ramírez Flores PG, Martin-Gutierrez J, editors. Smart Technology, 213, Cham: Springer International Publishing; 2018; 10–20. https://doi.org/10.1007/978-3-319-73323-4_2.
  • 23. Gashi M., Ofner P., Ennsbrunner H., Thalmann S. Dealing with missing usage data in defect prediction: A case study of a welding supplier. Computers in Industry 2021; 132: 103505. https://doi.org/10.1016/j.compind.2021.103505.
  • 24. Govender P., Sivakumar V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric Pollution Research 2020; 11: 40–56. https://doi.org/10.1016/j.apr.2019.09.009.
  • 25. Hu H., Liu J., Zhang X., Fang M. An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis. Pattern Recognition 2023; 139: 109404. https://doi.org/10.1016/j.patcog.2023.109404.
  • 26. Sirohi S., Kumar S., Pandey C. Characterization of damage in thermal barrier coating under different thermal cycle. Materials Today: Proceedings 2021; 38: 2110–6. https://doi.org/10.1016/j.matpr.2020.04.539.
  • 27. Górnik M., Jonda E., Nowakowska M., Łatka L. The effect of spray distance on porosity, surface roughness and microhardness of WC-10Co-4Cr coatings deposited by HVOF. Advances in Materials Science 2021; 21: 99–111. https://doi.org/10.2478/adms-2021-0028.
  • 28. Vignesh B., Oliver W.C., Kumar G.S., Phani P.S. Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings. Materials & Design 2019; 181: 108084. https://doi.org/10.1016/j.matdes.2019.108084.
  • 29. Alroy R.J., Seekala H., Phani P.S., Sivakumar G. Role of high-speed nanoindentation mapping to assess the structure-performance correlation of HVAF-sprayed Cr3C2-25NiCr coating. Surface and Coatings Technology 2024; 481: 130652. https://doi.org/10.1016/j.surfcoat.2024.130652.
  • 30. Li C., Qiao X., Wang T., Weng W., Li Q. Damage evolution and failure mechanism of thermal barrier coatings under Vickers indentation by using acoustic emission technique. Progress in Natural Science: Materials International 2018; 28: 90–6. https://doi.org/10.1016/j.pnsc.2017.12.002.
  • 31. Qiao X., Weng W.X., Li Q. Acoustic emission monitoring and failure behavior discrimination of 8YSZ thermal barrier coatings under Vickers indentation testing. Surface and Coatings Technology 2019; 358: 913–22. https://doi.org/10.1016/j.surfcoat.2018.12.024.
  • 32. Jonda E., Łatka L., Godzierz M., Maciej A. Investigations of microstructure and corrosion resistance of WC-Co and WC-Cr3C2-Ni coatings deposited by HVOF on magnesium alloy substrates. Surface and Coatings Technology 2023; 459: 129355. https://doi.org/10.1016/j.surfcoat.2023.129355.
  • 33. Jonda E., Łatka L., Lont A., Gołombek K., Szala M. The effect of HVOF spray distance on solid particle erosion resistance of WC-based Cermets Bonded by Co, Co-Cr and Ni Deposited on Mg-alloy Substrate. Adv Sci Technol Res J 2024; 18: 115–28. https://doi.org/10.12913/22998624/184025.
  • 34. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res 2004; 19: 3–20. https://doi.org/10.1557/jmr.2004.19.1.3.
  • 35. Chicot D. Hardness length-scale factor to model nano- and micro-indentation size effects. Materials Science and Engineering: A 2009; 499: 454–61. https://doi.org/10.1016/j.msea.2008.09.040.
  • 36. Łatka L., Chicot D., Cattini A., Pawłowski L., Ambroziak A. Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surface and Coatings Technology 2013; 220: 131–9. https://doi.org/10.1016/j.surfcoat.2012.07.025.
  • 37. Jonda E., Łatka L., Godzierz M., Olszowska K., Tomiczek A. Microstructure, residual stress and mechanical properties of double carbides cermet coatings manufactured on AZ31 substrate by high velocity oxy-fuel spraying. ArchivCivMechEng 2024; 24: 61. https://doi.org/10.1007/s43452-024-00867-z.
  • 38. Łatka L., Cattini A., Chicot D., Pawłowski L., Kozerski S., Petit F., Denoirjean A. Mechanical properties of Yttria- and Ceria-stabilized zirconia coatings obtained by suspension plasma spraying. J Therm Spray Tech 2013; 22: 125–30. https://doi.org/10.1007/s11666-012-9874-7.
  • 39. Jonda E., Szala M., Sroka M., Łatka L., Walczak M. Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Applied Surface Science 2023; 608: 155071. https://doi.org/10.1016/j.apsusc.2022.155071.
  • 40. Garcia-Dias R., Vieira S., Lopez Pinaya W.H., Mechelli A. Clustering analysis. Machine Learning, Elsevier 2020; 227–47. https://doi.org/10.1016/B978-0-12-815739-8.00013-4.
  • 41. Agüero A., Camón F., García de Blas J., del Hoyo J.C., Muelas R., Santaballa A., Ulargui S., Vallés P. HVOF-Deposited WCCoCr as replacement for hard Cr in landing gear actuators. J Therm Spray Tech 2011; 20: 1292–309. https://doi.org/10.1007/s11666-011-9686-1.
  • 42. Komarov P., Jech D., Tkachenko S., Slámečka K., Dvořák K., Čelko L. Wetting behavior of wearresistant WC-Co-Cr cermet coatings produced by HVOF: the role of chemical composition and surface roughness. J Therm Spray Tech 2021; 30: 285–303. https://doi.org/10.1007/s11666-020-01130-6.
  • 43. Tillmann W., Kuhnt S., Baumann I.T., Kalka A., Becker-Emden E.-C., Brinkhoff A. Statistical comparison of processing different powder feedstock in an HVOF thermal spray process. J Therm Spray Tech 2022; 31: 1476–89. https://doi.org/10.1007/s11666-022-01392-2.
  • 44. Hong S., Wu Y., Wu J., Zhang Y., Zheng Y., Li J., Lin J. Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines. Renewable Energy 2021; 164: 1089–99. https://doi.org/10.1016/j.renene.2020.08.099.
  • 45. Qiao L., Wu Y., Hong S., Long W., Cheng J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceramics International 2021; 47: 1829–36. https://doi.org/10.1016/j.ceramint.2020.09.009.
  • 46. Sidhu H.S., Sidhu B.S., Prakash S. Mechanical and microstructural properties of HVOF sprayed WC–Co and Cr3C2–NiCr coatings on the boiler tube steels using LPG as the fuel gas. Journal of Materials Processing Technology 2006; 171: 77–82. https://doi.org/10.1016/j.jmatprotec.2005.06.058.
  • 47. Karaoglanli A.C., Oge M., Doleker K.M., Hotamis M. Comparison of tribological properties of HVOF sprayed coatings with different composition. Surface and Coatings Technology 2017; 318: 299–308. https://doi.org/10.1016/j.surfcoat.2017.02.021.
  • 48. Bolelli G., Berger L.-M., Bonetti M., Lusvarghi L. Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hardmetal coatings. Wear 2014; 309: 96–111. https://doi.org/10.1016/j.wear.2013.11.001.
  • 49. Matikainen V., Rubio Peregrina S., Ojala N., Koivuluoto H., Schubert J., Houdková Š, Vuoristo P. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surface and Coatings Technology 2019; 370: 196–212. https://doi.org/10.1016/j.surfcoat.2019.04.067.
  • 50. Vashishtha N., Khatirkar R.K., Sapate S.G. Tribological behaviour of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2−25NiCr coatings. Tribology International 2017; 105: 55–68. https://doi.org/10.1016/j.triboint.2016.09.025.
  • 51. Houdková Š., Bláhová O., Zahálka F., Kašparová M. The Instrumented Indentation Study of HVOF-Sprayed Hardmetal Coatings. J Therm Spray Tech 2012; 21: 77–85. https://doi.org/10.1007/s11666-011-9677-2.
  • 52. Chen Y., Wu Y., Hong S., Long W., Ji X. The effect of impingement angle on erosion wear characteristics of HVOF sprayed WC-Ni and WC-Cr3C2-Ni cermet composite coatings. Mater Res Express 2020; 7: 026503. https://doi.org/10.1088/2053-1591/ab6d31.
  • 53. Bolelli G., Berger L.-M., Börner T., Koivuluoto H., Lusvarghi L., Lyphout C., Markocsan N., Matikainen V., Nylén P., Sassatelli P.,Trache R., Vuoristo P. Tribology of HVOF- and HVAF-sprayed WC–10Co-4Cr hardmetal coatings: A comparative assessment. Surface and coatings technology 2015; 265: 125–44. https://doi.org/10.1016/j.surfcoat.2015.01.048.
  • 54. Barletta M., Bolelli G., Bonferroni B., Lusvarghi L. Wear and corrosion behavior of HVOF-sprayed WC-CoCr coatings on al alloys. J Therm Spray Tech 2010; 19: 358–67. https://doi.org/10.1007/s11666-009-9387-1.
  • 55. Berger L.-M., Saaro S., Naumann T., Kašparova M., Zahálka F. Influence of feedstock powder characteristics and spray processes on microstructure and properties of WC–(W,Cr)2C–Ni hardmetal coatings. Surface and Coatings Technology 2010; 205: 1080–7. https://doi.org/10.1016/j.surfcoat.2010.07.032.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f5a6d70-349d-4439-9f35-5895ed4bcec4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.