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INTRODUCTION

The dynamic development of technology 
makes it necessary to look for new design solu-
tions aimed at improving the level of efficiency 
and quality of the product, reducing dimensions 
and weight, as well as increasing its reliability and 
dimensional stability under operating conditions 
[1, 2]. Therefore, the main factor determining 

competitiveness on the industrial market is the 
search for and introduction of innovative solu-
tions and technologies [3, 4].

One of the most important features that de-
termine the attractiveness of the product is its du-
rability and reliability under operating conditions 
[5]. However, in specific applications and condi-
tions in which it works, it is exposed to the nega-
tive impact of various factors, e.g. abrasive wear, 
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spraying. This method makes it possible to produce coatings characterized by compact structure, low porosity 
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posited on AZ31 magnesium alloy substrates from three different spray distances: 320, 360 and 400 mm. On the 
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similarity between the obtained coatings was determined. The applied methodology allowed to select from the ana-
lyzed cermet coatings such samples that were characterized by improved resistance to abrasive wear. The obtained 
results of the analyzes were also referred to the results of tests of resistance to abrasive wear.
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erosion and corrosion processes, resulting in a 
loss of its operational properties [6, 7]. Abrasive 
wear is the most common destruction process in 
industrial conditions, accounting for approxi-
mately 50% of cases, consisting in the separation 
of small particles of the surface layer caused by 
the presence of elements acting as abrasive in 
the friction nodes, which significantly reduces its 
properties [8]. Therefore, it is important to intro-
duce solutions that allow achieving the expected 
high level of functional properties, which in most 
cases involves the need to use new or improve 
existing production or regeneration techniques. 
These techniques restore functional properties 
and at the same time can increase the durability of 
the surface even several times [9, 10]. The most 
intensively developed directions for increasing 
the operational and functional properties of ma-
chine and equipment components include the use 
of coatings by thermal spray technology, includ-
ing high velocity oxy fuel spraying (HVOF) [11, 
12]. The coating allows you to combine the ben-
eficial properties of the core with the wear resist-
ance, hardness and heat resistance of the coating, 
which is the case with light construction materi-
als such as, among others, foundry magnesium 
alloys, which, despite many favorable properties 
(including low density and high strength), are 
characterized by low resistance to abrasive wear, 
which significantly limits the possibilities of their 
use in some applications [13, 14]. This technol-
ogy enables the production of coatings from a 
very wide range of materials, including: cermet 
materials based on tungsten carbide (WC), where 
due to the low temperature achieved by the par-
ticles, the carbide transformation takes place to a 
small extent. Moreover, because tungsten carbide 
(WC) can be well wetted, among others, by cobalt 
(Co), nickel (Ni), iron (Fe) and cobalt-chromium 
(CoCr), cermet materials made on its basis are 
among the most commonly used [15]. The ad-
vantages of the HVOF spraying method include 
slight heating of the substrate material during 
coating application, which practically excludes 
microstructural changes and limits its deforma-
tion [16, 17]. Moreover, coatings produced by this 
method are characterized by high quality, good 
mechanical properties, low porosity (< 3%), good 
corrosion resistance and low stresses inside the 
coating. This thermal spraying method is mainly 
used to manufacture coatings with high resistance 
to abrasive wear, protection against high tempera-
tures, erosion and corrosion [18, 19]. In the era of 

Industry 4.0, each production process is controlled 
and its parameters are controlled and recorded, 
which leads to the collection of large amounts of 
data. Databases containing large data sets can be 
used to obtain valuable information using data 
mining techniques [20]. Cluster analysis meth-
ods are a group of statistical techniques included 
in Data Mining that allow for the comparison of 
multidimensional objects, i.e. characterized by 
many diagnostic features [21]. These methods are 
based on the basic idea of creating groups of ob-
jects that meet the assumption of maximizing the 
distance between groups and minimizing the dis-
tance between elements in the considered cluster 
[22]. This is implemented using various methods, 
including two basic ones: hierarchical and non-
hierarchical method. In the first case, the forma-
tion of clusters involves agglomerative or divi-
sive building clusters based on hierarchy, while 
in the second situation it is achieved using vari-
ous algorithms organizing elements into clusters, 
e.g. by creating all the clusters simultaneously by 
partitioning the data [23]. Among the hierarchi-
cal methods, the leading role is played by various 
variants of the Ward method, and among the non-
hierarchical ones, k-means algorithms are often 
used. The main purposes of using cluster analysis 
are: investigation of the underlying structure of a 
data (extracting information hidden in the data), 
classification (indicating the degree of similarity 
between data points) and compression (organiz-
ing and summarizing objects into understandable 
groups) [24]. Cluster analysis techniques have 
been used in many fields of science and technol-
ogy, in solving many different technical, as well 
as humanistic, social and medical problems [25]. 
Coating manufacturing processes are described 
by many parameters [26, 27], so they can be 
treated as multidimensional objects. This justi-
fies an attempt to use cluster analysis as a tool to 
describe the properties of coatings. On the other 
hand, in the literature there is a very low num-
ber of papers where cluster analysis is used for 
thermal spray coatings characterization. Only a 
few examples are mainly connected with Vickers 
indentation and failure behaviour [28, 29] and as 
additional tool for acoustic emission technique 
[30, 31]. The aim of the work was to verify the 
possibility of applying cluster analysis algorithms 
to predict the abrasive wear resistance of coatings 
sprayed using the HVOF method on a substrate 
made of AZ31 foundry magnesium alloy. Based 
on the results obtained from experimental tests 
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of abrasive wear, a preliminary assessment of the 
resistance of the produced coatings was made in 
order to predict their resistance to abrasive wear 
depending on the type of coating material used 
and the distance of the gun nozzle from the sub-
strate material during the spraying process.

MATERIALS AND METHODS

Three types of commercially available pow-
ders were tested as feedstock material: (i) WC-
12wt.%Co (Amperit 558.074, Höganäs), (ii) 
WC-10wt.%Co-4wt.%Cr (Amperit 518.074, 
Höganäs) and (iii) WC-20wt.%Cr3C2-7wt.%Ni 
(Woka 3702-1, Oerlikon Metco). The powders 
were sintered and agglomerated, and the particle 
size range of each of them was from −45 to +15 
µm. The detail information about powders char-
acterization could be found in [32, 33]. The sub-
strate material was AZ31 magnesium alloy. The 
samples dimensions were: 60 mm in diameter and 
10 mm in the thickness. Before spraying the sub-
strate surfaces were sand blasted and cleaned with 
ethanol. The deposition of coatings was carried 
out by high velocity oxy fuel (HVOF) process 
with a spray system JP 5000 TAFA (Indianapolis, 
USA) in the industry conditions (RESURS Com-
pany in Warsaw, Poland). The liquid fuel was 
kerosene with feed rate equal to 26.1 l/h, whereas 
oxygen flow rate was equal to 900 slpm. Pow-
der feed rate was keep state at the level 70 g/min. 
The variable parameter was spray distance. The 
samples code was given in Table 1.

The obtained coatings were examined in 
terms of their topography as well as polished 
cross sections using scanning electron micro-
scope, SEM (Supra 35, Zeiss, Oberkochen, 
Germany) and digital optical microscope, 
Keyence VHX6000 (Keyence International, 
Mechelen, Belgium). The SEM images were 
used to determine coatings porosity. Twenty 
images at 1000x magnifications at random lo-
cations were carried out. The porosity of de-
posited coatings was assessed using ImageJ 

open source software (1.50i version) according 
to the ASTM E2109-01 standard. The micro-
hardness of coatings was measured with Vick-
ers penetrator under a load of 2.94 N (HV0.3) 
using the HV1000 hardness tester (Sinowon 
Innovation Metrology, Dongguan, China), 
according to the EN ISO 4516 standard. For 
each sample at least 10 imprints at the coat-
ings cross section were made. Then, average 
values and standard deviations were calculat-
ed. On the other hand, instrumental indention 
have been used because of finer structure for 
cermet coatings. The indentation testing was 
carried out on an NHT3 nanoindenter (Anton 
Paar, Graz, Austria). All tests were carried out 
at room temperature, on the coating cross sec-
tions, according to the ISO 14577-4 standard. 
The maximum load value is 500 mN and the 
Oliver-Pharr method [34] was selected to cal-
culate the coating hardness. Additionally, the 
instrumental Young’s modulus was determined 
using the indentation technique. These values 
are calculated from the slope of the discharge 
portion of the load depth curve. In the current 
study, the maximum load values ranged from 
50 to 500 mN in increments of 50 mN. Then, 
the value of Young’s modulus is calculated ac-
cording to the Chicot method [35] with some 
slight variations in [36]. Fracture toughness 
(KIC) was measured by Vickers indentation 
test according to ASTM C1421 standard. The 
detailed information could be found in [37].
The cohesion in the deposited coatings was 
estimated by scratch hardness (HSL) assess-
ment. These measurements were carried out 
with MicroCombiTester (Anton Paar, Graz, 
Austria) which was equipped with Rockwell 
diamond indenter (tip radius equal to 0.2 mm). 
The detailed information about this method-
ology could be found in [38]. The tribologi-
cal behaviours of the composite coatings and 
the reference metal alloy were investigated in 
dry sliding conditions at room temperature us-
ing a MFT-5000 apparatus (Rtec Instruments, 
San Jose, CA, USA). Measurements were 

Table 1. The samples code and variable parameter values

Feedstock powder
Spray distance, mm

320 360 400

WC-12Co SDA-I SDA-II SDA-III

WC-10Co-4Cr SDB-I SDB-II SDB-III

WC-20Cr3C2-7Ni SDC-I SDC-II SDC-III
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of the samples cross-sections are presented in 
Figure 2. In all cases the coatings exhibit dense 
and homogenous structure with good adhesion 
to the substrate. It is characteristic for HVOF 
method of coatings deposition [44, 45]. The 
first group of the mechanical properties (po-
rosity, microhardness and fracture toughness) 
of deposited coatings are collected in Table 2. 
Presented values indicate the influence of in-
creasing spray distance on increasing porosity 
as well as fracture toughness and decreasing 
microhardness. This dependency and obtained 
values are relatively close to the literature data 
[46, 47]. On the other hand, the type of coat-
ings material also influence on these proper-
ties. In this case cermets based on cobalt matrix 
exhibit higher hardness and fracture toughness 
values, whereas coatings with nickel matrix 
show lower porosity values. Explanation of 
these phenomena could be found in [48–50].  
The second group of the mechanical proper-
ties (instrumental hardness, instrumental elas-
tic modulus and cohesion in the coating) are 
collected in Table 3. In this case, the influence 
of the spray distance is clearly visible. With in-
creasing distance the values of all parameters 
decreasing. Similar tendency could be found in 
[51, 52]. On the other hand, the material type is 
very interesting, because samples WC-Co-Cr 
exhibit the highest value of the elastic modulus 
and cohesion in the coating. It could be con-
nected with strengthening cause by solid solu-
tion with chromium and cobalt [53, 54]. Also 
WC grains are very good wetted by these two 
metals, which improve cohesion in the coat-
ing [15, 55]. Table 4 shows a matrix with the 
values of correlation coefficients between all 
analyzed independent variables. All variables 
except P are highly correlated with the others. 
This is unfavorable from the point of view of 

performed by the ball-on-disc method accord-
ing to the ASTM G99 standard. Before the 
tests, rectangular test specimens (25 × 25 mm), 
were ground and polished in order to achieve 
an average surface roughness (Ra) of around 
0.8 μm. The WC-Co counter ball diameter was 
set at 6 mm. The applied load, sliding speed, 
sliding distance, and radius were 50 N, 10 
cm/s, 1000 m, and 3 mm, respectively. The de-
tailed information could be found in [39]. The 
analyzes used a methodology known from the 
literature, consisting in the Ward’s hierarchical 
grouping method, which allows, among others, 
determining the number of clusters and then 
the non-hierarchical k-means method [40]. The 
relative similarity between properties of the ob-
tained coatings was determined in Statistica 13 
software package based on input data. The ana-
lyzes were performed in the following order: data 
preparation (correlation verification, variability 
analysis, normalization, stimulation), analysis us-
ing the Ward method with Euclidean distance 
(creating a dendrogram and assessing the number 
of clusters stages supported by substantive analy-
sis), analysis using the k-means method. Linear 
ordering based on the same data has also been 
done. The results of all analyzes were subjected 
to substantive analysis.

RESULTS AND DISCUSSION

The SEM images of selected samples sur-
face morphologies are presented in Figure 1. 
For all examples relatively smooth surface with 
single unmelted particles could be seen. In gen-
eral it is a typical morphology for HVOF de-
posited cermet coating [41, 42]. Slightly differ-
ences connected with different spray distance 
are also similar like in [43]. The SEM images 

Figure 1. The SEM images of the surface topography for selected 
deposited coatings: a) SDA-I, b) SDA-II, c) SDA-III
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Figure 2. The SEM images of the cross-section for selected deposited coatings: a) SDA-I, b) SDA-II, c) SDA-III

Table 2. The average values of the porosity, microhardness and fracture toughness estimated for investigated coatings

Sample Porosity, vol.% Microhardness, HV0.3 Fracture toughness, KC, 
MPa·m1/2

SDA-I 1.9 ± 0.5 1305 ± 148 4.78 ± 0.47

SDA-II 2.6 ± 0.5 1296 ± 168 4.95 ± 0.54

SDA-III 2.8 ± 0.6 1085 ± 176 5.14 ± 0.49

SDB-I 2.3 ± 0.5 1278 ± 127 5.16 ± 0.46

SDB-II 2.9 ± 0.7 1198 ± 151 4.72 ± 0.68

SDB-III 3.1 ± 0.6 1042 ± 186 4.89 ± 0.62

SDC-I 1.3 ± 0.4 1027 ± 103 3.03 ± 0.29

SDC-II 1.9 ± 0.5 989 ± 108 3.14 ± 0.35

SDC-III 2.1 ± 0.5 990 ± 139 3.22 ± 0.36

Table 3. The average values of the instrumental hardness, instrumental elastic modulus and cohesion estimated 
for investigated coatings

Sample Instrumental hardness  
HIT, GPa

Instrumental elastic modulus  
EIT, GPa

Cohesion parameter 
HSL, GPa

SDA-I 16.49 ± 2.04 339 4.5 ± 1.1

SDA-II 15.94 ± 2.15 333 4.7 ± 1.1

SDA-III 14.21 ± 2.37 330 4.0 ± 0.8

SDB-I 15.21 ± 1.97 346 5.5 ± 1.3

SDB-II 14.67 ± 1.82 341 5.3 ± 1.2

SDB-III 13.42 ± 2.25 334 4.8 ± 1.2

SDC-I 12.76 ± 1.77 312 4.1 ± 0.8

SDC-II 12.23 ± 1.29 305 3.8 ± 0.7

SDC-III 11.43 ± 1.88 301 3.5 ± 0.7

Table 4. Correlation matrix of diagnostic features
Diagnostic feature P HV KC HIT EIT HSL

P 1.00 0.19 0.73 0.26 0.54 0.45

HV 0.19 1.00 0.73 0.98 0.85 0.75

KC 0.73 0.73 1.00 0.79 0.92 0.70

HIT 0.26 0.98 0.79 1.00 0.86 0.67

EIT 0.54 0.85 0.92 0.86 1.00 0.89

HSL 0.45 0.75 0.70 0.67 0.89 1.00

Note: P – porosity, vol. %, HV – vickers hardness, Kc – fracture toughness, MPa·m1/2, HIT – instrumental hardness, 
GPa, EIT – instrumental elastic modulus, GPa, HSL – cohesion parameter, GPa.
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cluster analysis, but this is due to the nature 
of these studies, which describe the topogra-
phy and mechanical properties of coatings in 
different ways. In the following analysis it is 
important to estimate discriminatory ability 
of the diagnostic features. For this reason the 
variability of features values was determined 
using the following relationship:

 𝜔𝜔 = 𝑠𝑠𝑗𝑗
𝑥𝑥𝑗𝑗

       (1) 

𝑋𝑋𝑖𝑖𝑖𝑖′ = 𝑥𝑥𝑖𝑖𝑗𝑗−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑖𝑖𝑗𝑗)
𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥𝑖𝑖𝑗𝑗)−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑖𝑖𝑗𝑗)

     (2) 

𝑤𝑤 = ∑𝑋𝑋𝑖𝑖𝑗𝑗′

𝑚𝑚 ∙ 100%     (3) 
 

 (1)

where: ω – coefficient of variation, sj – stan-
dard deviation, xj – arithmetic mean of 
the feature value.

The results of above mentioned calculations 
are presented in Table 5. As it could be seen, all di-
agnostic features, except EIT, are characterized by 
appropriate discriminatory ability (with ω > 0.1). A 
low value of feature variability could be the basis 
for excluding it from the analysis, but in this case 
it was decided to include it. Since it was assumed 
that all features are stimulants, they were normal-
ized according to the relationship:

 

𝜔𝜔 = 𝑠𝑠𝑗𝑗
𝑥𝑥𝑗𝑗

       (1) 

𝑋𝑋𝑖𝑖𝑖𝑖′ = 𝑥𝑥𝑖𝑖𝑗𝑗−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑖𝑖𝑗𝑗)
𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥𝑖𝑖𝑗𝑗)−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑖𝑖𝑗𝑗)

     (2) 

𝑤𝑤 = ∑𝑋𝑋𝑖𝑖𝑗𝑗′

𝑚𝑚 ∙ 100%     (3) 
 

 (2)

where: X’ij – normalized value of the diagnostic fea-
ture, xij – value of the diagnostic feature.

Based on the test results listed in Table 
6 as diagnostic features, three analyzes were 
performed for the following sets of diagnostic 
features based on the analysis of the thermal 
spraying process and coating properties: anal-
ysis I: Pn, HVn, KCn, HITn, EITn, and HSLn 

(all), analysis II: Pn, KCn, HITn, EITn and 
HSLn, analysis III: Pn, HITn, and HSLn. Den-
drograms illustrating the results of these ana-
lyzes are shown in Figure 3. In all three cases, 
two clusters can be distinguished: the first one 
covering three samples: SDC-I, SDC-II, SDC-
III (cluster I) and the second grouping the re-
maining six samples: SDA-I, SDB-I, SDA-II, 
SDB-II, SDA-III, SDB-III (cluster II). The 
proposed division of the data set into clusters 
is marked in the plots with a dashed line. The 
distances between elements determining the 
degree of similarity in cluster II are different 
for each analysis. The results for cluster I are 
more homogeneous. The next stage of cluster 
analysis was to conduct the analysis using the 
non-hierarchical k-means method for the same 
sets of diagnostic features. The number of clus-
ters (two) was assumed based on a previously 
conducted analysis using the Ward method. 
The initial cluster centers were determined ac-
cording to the command: “choose observations 
to maximize initial between-cluster distances”. 
The results of the k-means analysis are shown 
in Figure 4. The results of linear ordering in 
the form of a plot are presented in Figure 5. 
Normalized index value was calculated based 
on the relationship:

 

𝜔𝜔 = 𝑠𝑠𝑗𝑗
𝑥𝑥𝑗𝑗

       (1) 

𝑋𝑋𝑖𝑖𝑖𝑖′ = 𝑥𝑥𝑖𝑖𝑗𝑗−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑖𝑖𝑗𝑗)
𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥𝑖𝑖𝑗𝑗)−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑖𝑖𝑗𝑗)

     (2) 

𝑤𝑤 = ∑𝑋𝑋𝑖𝑖𝑗𝑗′

𝑚𝑚 ∙ 100%     (3) 
 

 (3)

where: w – index value, X’ij – normalized value 
of the diagnostic feature, n – number of 
diagnostic features.

Table 5. Coefficient of variation for diagnostic features
Diagnostic feature P HV KC HIT EIT HSL

Coefficient of variation, ω 0.25 0.13 0.21 0.23 0.05 0.15

Table 6. Results of the diagnostic features in normalized form
Sample P HV KC HIT EIT HSL

SDA-I 0.33 1.00 0.82 1.00 0.84 0.50

SDA-II 0.72 0.98 0.90 0.89 0.71 0.60

SDA-III 0.83 0.47 0.99 0.55 0.64 0.25

SDB-I 0.56 0.94 1.00 0.75 1.00 1.00

SDB-II 0.89 0.74 0.79 0.64 0.89 0.90

SDB-III 1.00 0.37 0.87 0.39 0.73 0.65

SDC-I 0.00 0.33 0.00 0.26 0.24 0.30

SDC-II 0.33 0.24 0.05 0.16 0.09 0.15

SDC-III 0.44 0.00 0.09 0.00 0.00 0.00
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Figure 3. Euclidean distance dendrogram (Ward method) of coatings: 
(a) analysis I; (b) analysis II and (c) analysis III
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Figure 4. Plots of means for clusters: (a) analysis I; (b) analysis II and (c) analysis III

It is clearly visible that in this case also two 
clusters can be distinguished, including SDC-
I, SDC-II and SDC-III elements (cluster I) and 
the remaining samples (cluster II). Based on this 
analysis, it can be assumed that the most resis-
tant against wear is SDB-I sample and the least 
resistant is SDC-III one. The results obtained 
by carried out ball-on disc investigations, pre-
sented in the form of volumetric wear, strongly 

confirmed the effects of the cluster analysis. 
The average values of wear factor (K) for tested 
samples are presented in Table 7. As it could be 
seen the order is almost the same as in the Fig-
ure 5, which confirms the relatively high level of 
compatibility and correctness of the carried out 
analyzes. It is also a proof that cluster analysis 
could be used in order to describe the functional 
properties of thermally sprayed coatings. 
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Figure 5. Linear ordering, scatterplot of normalized index for analysis II

Table 7. The average values of the wear factor, K (10-8 mm3/N·m) for tested coatings
Samples code

SDA-I SDA-II SDA-III SDB-I SDB-II SDB-III SDC-I SDC-II SDC-III

9.1 7.7 9.6 5.6 6.2 8.4 12.3 14.4 17.8

(5) (3) (6) (1) (2) (4) (7) (8) (9)

Note: (1) – the best wear resistance; (9) – the worst wear resistance

CONCLUSIONS

In this study, three commercial WC-based 
powders were deposited on the AZ31 magnesium 
alloy substrate by HVOF method. The variable 
process parameter was spray distance. The main 
research goal of the current paper was to check 
the statistical investigation possibilities of replac-
ing long-term wear resistance tests with determi-
nation of this performance on the basis of deter-
mining the fundamental mechanical properties of 
the coatings. Selected mechanical properties were 
used as a diagnostic features in order to estimate 
wear resistance of the deposits. The successful of 
the developed methodology was proved. The fol-
lowing findings can be summarized:
 • all cermet coatings exhibit dense and com-

pact structure;
 • the applied methodology allowed to select 

from the analyzed cermet coatings such sam-
ples that were characterized by improved re-
sistance to abrasive wear;

 • the obtained results of the analyzes were also 
referred to the results of tests of resistance to 
abrasive wear;

 • the possibility of using cluster analysis meth-
ods for classification was positively verified.

It should be stressed that to the best Authors 
knowledge, carried out analysis is a very rare ex-
ample of article devoted above mentioned issues.
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