PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coupled static and dynamic buckling modelling of thin-walled structures in elastic range review of selected problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM) or/and analytical-numerical method (ANM) to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.
Rocznik
Strony
141--149
Opis fizyczny
Bibliogr. 121 poz., rys., wykr.
Twórcy
  • Department of Strength of Materials, K12, Lodz University of Technology, ul. Stefanowskiego 1/15, 94-024 Lodz, Poland
autor
  • Department of Applied Mechanics, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Ali M.A., Sridharan S. (1988), A versatile model for interactive buckling of columns and beam-columns, International Journal of Solids and Structures, Vol. 24, 481–486.
  • 2. Ari-Gur J., Simonetta S.R. (1997), Dynamic pulse buckling of rectangular composite plates, Composites Part B, Vol. 28B, 301-308.
  • 3. Bangash M.Y.H. (2009), Shock. impact and explosion, Structural analysis and design, Springer, Verlag, New York, USA.
  • 4. Bao G., Jiang W., Roberts J.C. (1997), Analytic and finite element solutions for bending and buckling of orthotropic rectangular plates, Int J Solid Struct, Vol. 34, No. 14, 1797–1822.
  • 5. Barbero E., Tomblin J. (1993), Euler buckling of thin-walled composite columns, Thin-Walled Structures, Vol. 17, 237–258.
  • 6. Barbero E.J., Madeo A., Zagari G., Zinno R., Zucco G. (2014), Koiter asymptotic analysis of folded laminated composite plates, Composites Part B: Engineering, Vol.61, 267-274.
  • 7. Barsoum R.S., Gallagher R.H. (2009), Finite element analysis of torsional and torsional-flexural stability problems, Int. Journal for Numerical Methods in Engineering, Vol. 2, 335-352.
  • 8. Bazant Z.P., Cedolin L. (2010), Stability of Structures. Elastic. Inelastic. Fracture and Damage Theories, Oxford University Press, UK.
  • 9. Becque J., Rasmusen K.J.R. (2009), Experimental investigation of local-overall interaction buckling of stainless steel lipped channel columns, J. Constructional Steel Research, Vol. 65, 1677–1684.
  • 10. Benito R., Sridharan S. (1985), Mode interaction in thin-walled structural members, Journal of Structural Mechanics, Vol. 12, 517- 542.
  • 11. Benito R., Sridharan S. (1985). Interactive buckling analysis with finite strips, International Journal for Numerical Methods in Engineering, Vol. 21,145-161.
  • 12. Bradford M.A. (1990), Lateral-distortional buckling of tee-section beams, Thin-Walled Structures, Vol. 10, 13-30.
  • 13. Budiansky B. (1966), Dynamic buckling of elastic structures: criteria and estimates. Report SM-7, NASA CR-66072, USA.
  • 14. Budiansky B. (1966), Survey of some buckling problem. AIAA Journal, Vol. 4, 1505-1510.
  • 15. Byskov E. (1979), Applicability of an asymptotic expansion for elastic buckling problems with mode interaction, AIAA Journal, Vol. 17, 630-633.
  • 16. Byskov E. (1988), Elastic buckling problem with infinitely many local modes, Mechanics of Structures and Machines, Vol. 15, 413-435.
  • 17. Byskov E., Hutchinson JW. (1977), Mode interaction in axially stiffened cylindrical shells, AIAA Journal, Vol.15, 941-48.
  • 18. Casciaro R., Garcea G., Attanasio G., Giordano F. (1998), Pertubative approach to elastic post-buckling analysis, International Journal of Computer & Structure, Vol. 66, 585-595.
  • 19. Chou S.M., Rhodes J. (1997), Review and compilation of experimental results on thin-walled structures. Computers & Structures, Vol. 65 No. 1, 47–67.
  • 20. Cui S., Cheong H.K., Hao H. (1999), Experimental study of dynamic buckling of plates under fluid-solid slamming. International Journal of Impact Engineering, Vol. 22, 675-691.
  • 21. Cui S., Hao H., Cheong H.K. (2002), Theoretical study of dynamic elastic buckling of columns subjected to intermediate velocity impact loads, International Journal of Mechanical Science, Vol. 44, 687-702.
  • 22. Debski H. (2013), Experimental investigation post-buckling behaviour of composite column with top-hat cross section, Maintenance and Reliability, Vol. 2, 105–109.
  • 23. Debski H., Kubiak T., Teter A. (2013a), Buckling and postbuckling behaviour of thin-walled composite channel section column”, Composite Structures Vol. 100, 195-204.
  • 24. Debski H., Kubiak T., Teter A. (2013b), Experimental investigation of channel-section composite profiles’ behaviour with various sequences of plies subjected to static compression, Thin-Walled Structures, Vol. 71, 147–154.
  • 25. Dvorkin E.N., Bathe KJ. (1984), A continuum mechanics based four-node shell element for general nonlinear analysis, Engineering Computations, Vol. 1, 77-88.
  • 26. Fafard M., Beauleu D., Dhatt C. (1987), Buckling of thin-walled members by finite elements, Computers and Structures, Vol. 25, 183-190.
  • 27. Garcea G., Madeo A., Zagari G. and Casciaro R. (2009), Asymptotic post-buckling FEM analysis using correlational formulation, International Journal of Solids and Structures, Vol. 46, 377–397.
  • 28. Garcea G., Salerno G., Casciaro R. (1999), Sanitizing of locking in Koiter perturbation analysis through mixed formulation, Computer Methods in Applied Mechanics and Engineering, Vol. 180,137-167.
  • 29. Gilat R., Aboudi J. (1995), Dynamic buckling of nonlinear resin matrix composite structures, Composite Structures, Vol. 32, 81-88.
  • 30. Goltermann P., Mollman H. (1989), Interactive buckling in thinwalled beams – II. Applications, International Journal of Solids and Structures, Vol. 25, 729-749.
  • 31. Gupta R.K., Rao K.P. (1985), Instability of laminated composite thinwalled open-section beams, Composite Materials, Vol. 4, 299–313.
  • 32. Hancock G.J. (2003), Cold-formed steel structures, J. Constructional Steel Research, Vol. 59, 473–487.
  • 33. Hsu C.S. (1967), The effects of various parameters on the dynamic stability of shallow arch, Journal of Applied Mechanics, Vol. 34, 349-356.
  • 34. Hsu C.S. (1968), On dynamic stability of elastic bodies with prescribed initial conditions, International Journal of Non-Linear Mechanics, Vol. 4, 1-21.
  • 35. Hutchinson J.W., Budiansky B. (1966), Dynamic buckling estimates, AIAA Journal, Vol. 4, 525-530.
  • 36. Kappos AJ. Dynamic Loading and Design of Structures, Spon Press, Taylor & Francis Group, 2002.
  • 37. Kirsch U. (2004), Design-oriented Analysis of Structures, Unified Approach. Kluwer Academic Publishers, USA.
  • 38. Kleiber M., Kotula W., Saran M. (1987), Numerical analysis of dynamic quasi-bifurcation, Engineering Computations Vol. 4, 48-52.
  • 39. Koiter WT. (1976), General theory of mode interaction in stiffened plate and shell structures, WTHD Report 590, Delft.
  • 40. Koiter W.T., Pignataro M. (1974), An alternative approach to the interaction between local and overall buckling in stiffened panels, Buckling of Structures/Proceedings of IUTAM Symposium. Cambridge, 133–148.
  • 41. Kolakowski Z. (1987a), Mode interaction in thin-walled trapezoidal column under uniform compression, Thin-Walled Structures, Vol. 5, 329-342.
  • 42. Kolakowski Z. (1987b), Mode interaction in wide plate with closed section longitudinal stiffeners under compression, Engineering Transactions, Vol. 35, 591-609.
  • 43. Kolakowski Z. (1988), Some aspects of mode interaction in thinwalled stiffened plate under uniform compression, Engineering Transactions, Vol. 36, 167-179.
  • 44. Kolakowski Z. (1989a), Interactive buckling of thin-walled beams with open and closed cross-section, Engineering Transactions, Vol. 37, 375-397.
  • 45. Kolakowski Z. (1989b), Mode interaction in wide plate with angle section longitudinal stiffeners under compression, Engineering Transactions, Vol. 37, 117-135.
  • 46. Kolakowski Z. (1989c), Some thoughts on mode interaction in thinwalled columns under uniform compression. Thin-Walled Structures, Vol. 7, 23-35.
  • 47. Kolakowski Z. (1993a), Influence of modification of boundary conditions on load carrying capacity in thin-walled columns in the second order approximation, International Journal of Solids and Structures, Vol. 30, 2597-2609.
  • 48. Kolakowski Z. (1993b), Interactive buckling of thin-walled beams with open and closed cross-sections, Thin-Walled Structures, Vol. 15, 159-183.
  • 49. Kolakowski Z. (1996), Semi-analytical method for the analysis of the interactive buckling of thin-walled elastic structures in the second order approximation, International Journal of Solids and Structures, Vol. 33, 3779-3790.
  • 50. Kolakowski Z. (2007), Some aspects of dynamic interactive buckling of composite columns, Thin-Walled Structures, Vol. 45, 866–871.
  • 51. Kolakowski Z. (2009), Static and dynamic interactive buckling of composite columns, Journal of Theoretical and Applied Mechanics, Vol. 47, 177-192.
  • 52. Kolakowski Z. Mania R.J. (2013), Semi-analytical method versus the FEM for analyzing of the local post-buckling of thin-walled composite structures, Composite Structures, Vol. 97, 99–106.
  • 53. Kolakowski Z., Krolak M. (1995), Interactive elastic buckling of thinwalled closed orthotopic beam-columns, Engineering Transactions, Vol. 43, 571-590.
  • 54. Kolakowski Z., Krolak M. (2002), Modal coupled instabilities of thinwalled composite plate and shell structures, Composite Structures, Vol. 76, 303-313.
  • 55. Kolakowski Z., Krolak M., Kowal-Michalska K. (1999), Mode interactive buckling of thin-walled composite beam-columns regarding distortional deformations, International Journal of Engineering Sciences, Vol. 37, 1577-1596.
  • 56. Kolakowski Z., Kubiak T. (2005), Load-carrying capacity of thinwalled composite structures, Composite Structures, Vol. 67, 417– 426.
  • 57. Kolakowski Z., Kubiak T. (2007), Interactive dynamic buckling of orthotropic thin-walled channels subjected to in-plane pulse loading, Composite Structures, Vol. 81, 222-232.
  • 58. Kolakowski Z., Teter A. (1995), Influence of local postbuckling behaviour on bending of thin-walled elastic beams with central intermediate stiffeners, Engineering Transactions, Vol. 43, No. 3, 383-396.
  • 59. Kolakowski Z., Teter A. (1995), Interactive buckling of thin-walled closed elastic column-beams with intermediate stiffeners, International Journal of Solid and Structures, Vol. 32, 1501-1516.
  • 60. Kolakowski Z., Teter A. (2000), Interactive buckling of thin–walled beam–columns with intermediate stiffeners or/and variable thickness, International Journal of Solid and Structures, Vol. 37, 3323–3344.
  • 61. Kounadis A.N., Gantes C., Simitses G. (1997), Nonlinear dynamic buckling of multi-dof structural dissipative system under impact loading, International Journal Impact Engineering, Vol. 19, 63-80.
  • 62. Krolak M., Kowal-Michalska K., Mania R.J., Swiniarski J. (2007), Experimental tests of stability and load carrying capacity of compression thin-walled multi-cell columns of triangular crosssection, Thin-Walled Structures, Vol. 45, 883–887.
  • 63. Krolak M., Mlotkowski A. (1996), Experimental analysis of postbuckling and collapse behaviour of thin-walled box-section beam, Thin-Walled Structures, Vol. 26, 287–314.
  • 64. Kubiak T. (2007), Criteria of dynamic buckling estimation of thinwalled structures, Thin-Walled Structures, Vol. 45, 888–892.
  • 65. Kubiak T. (2013), Static and dynamic buckling of thin-walled plate structures, Springer Verlag, London, UK.
  • 66. Kwon Y.B., Kim B.S., Hancock G.J. (2007), Compression tests of high strength cold-formed steel channels with buckling interaction, J. Constructional Steel Research, Vol. 63, 1590–1602.
  • 67. Lee H.P., Harris P.J. (1979), Post-buckling strength of thin-walled members, Computers and Structures, Vol. 10, 689-702.
  • 68. Lee H.P., Harris P.J., Cheng-Tzu T.H. (1984), A nonlinear finite element computer program for thin-walled member, Thin-Walled Structures, Vol. 2, 355-376.
  • 69. Lindberg H.E. (ed.) (1987), Dynamic pulse buckling, Kluwer Academic Publishers. 70. Madenci E., Guven I. (2006), The finite element method and applications in engineering using ANSYS. Springer, Verlag, New York, USA.
  • 71. Magnucka-Blandzi E., Magnucki K. (2011), Buckling. and optimal design of cold-formed thin-walled beams: Review of selected problems, Thin-Walled Structures, Vol. 49, 554-561.
  • 72. Magnucka-Blandzi E., Paczos P., Wasilewicz P. (2012), Buckling study of thin-walled channel beams with double box-flanges in pure bendin, Strain, Vol. 48, No. 4, 317-325.
  • 73. Magnucki K., Paczos P., Kasprzak J. (2010), Elastic buckling of cold-formed thin-walled channel beams with drop flanges, Journal of Structural Engineering, Vol. 136, No. 7, 886-96.
  • 74. Manevich AI. (1981), Interaction of buckling modes of stiffened plate under compression, Stroitelnaya Mekhanika i Raschet Sooruzhenii, Vol.1, 24-29.
  • 75. Manevich AI. (1982), Theory of interaction buckling of stiffened thinwalled structures, Prikladnaya Matematika i Mekhanika, Vol.46, 337-345.
  • 76. Manevich AI. (1985), Stability of shells and plates with T-section stiffeners, Stroitelnaya Mekhanika i Raschet Sooruzhenii, Vol. 2, 3 4-38.
  • 77. Manevich AI. (1988), Interactive buckling of stiffened plate under compression, Mekhanika Tverdogo Tela, Vol. 5, 152-159.
  • 78. Mania R. (2005), Buckling analysis of trapezoidal composite sandwich plate subjected to in-plane compression, Composite Structures, Vol. 69, 482–490.
  • 79. Mania R., Kowal-Michalska K. (2007), Behaviour of composite columns of closed cross-section under in-plane compressive pulse loading, Thin-Walled Structures, Vol. 45, 902-905.
  • 80. Moellmann H. and Goltermann P. (1989), Interactive buckling in thinwalled beams; Part I: Theory; Part II: Applications, Inter. Journal of Solids and Structures, Vol. 25, 715–749.
  • 81. Morris A. (2008), Practical guide to reliable finite element modelling. John Wiley&Sons Inc, USA.
  • 82. Niezgodzinski T., Kubiak T. (2005), The problem of stability of web sheets in box-girders of overhead cranes, Thin-Walled Structures Vol. 43, 1913-1925.
  • 83. Parlapalli M.R., Soh K.C., Shu D.W., Ma G. (2007), Experimental investigation of delamination buckling of stitched composite laminates, Composites: Part A; Vol. 38, 2024–2033.
  • 84. Petry D. and Fahlbusch G. (2000), Dynamic buckling of thin isotropic plates subjected to in-plane impact, Thin-Walled Structures Vol. 38, 267-283.
  • 85. Pignataro M., Luongo A. (1987), Asymmetric interactive buckling of thinwalled columns with initial imperfection, Thin-Walled Structures, Vol. 3, 365–386.
  • 86. Pignataro M., Luongo A. (1987), Multiple interactive buckling of thin-walled members in compression, Proceedings of the International Colloq. on Stability of Plate and Shell Structures. University Ghent, 235–240.
  • 87. Pignataro M., Luongo A., Rizzi N. (1985), On the effect of the local overall interaction on the postbuckling of uniformaly compressed channels, Thin-Walled Structures, Vol. 3, 283-321.
  • 88. Powell G., Klinger R. (1970) Elastic lateral buckling of steel beams, Journal of Structural Engineering ASCE, Vol. 96, No. 9, 1919-1932.
  • 89. Put B.M., Pi Y.L., Trahair N.S. (1999), Lateral buckling test on coldformed channel beams, Journal of Structural Engineering ASCE, Vol. 125, No. 5, 532–539.
  • 90. Rajasekaran S., Murray D.W. (1973), Coupled local buckling in wide flange beam columns, Journal of Structural Engineering ASCE 1973;99(6):1003-23.
  • 91. Schokker A., Sridharan S., Kasagi A. (1996), Dynamic buckling of composite shells. Computers and Structures, Vol. 59, 43-55.
  • 92. Simitses G.J. (1990), Dynamic stability of suddenly loaded structures, Springer Verlag, New York, USA.
  • 93. Simitses G.J., Hodges D.H. (2006), Fundamentals of structural stability, Butterworth-Heinemann, USA.
  • 94. Singer J., Arbocz J., Weller T. (1998), Buckling experiments. experimental methods in buckling of thin-walled structure. Basic concepts. columns. beams and plates, Vol. 1, John Wiley & Sons Inc., New York, USA.
  • 95. Singer J., Arbocz J., Weller T. (2002), Buckling experiments. experimental methods in buckling of thin-walled structure. shells built-up structures. Composites and additional topics, Vol. 2, John Wiley & Sons Inc., New York, USA.
  • 96. Sridharan S. (1983), Doubly symmetric interactive buckling of plate structures, International Journal of Solids and Structures, Vol. 19, 625-641.
  • 97. Sridharan S., Ali M.A. (1985), Interactive buckling in thin-walled beam-columns, Journal of Engineering Mechanics, ASCE, Vol. 111, 1470–1486.
  • 98. Sridharan S., Ali M.A. (1986), An improved interactive buckling analysis of thin-walled columns having doubly symmetric sections, International Journal of Solids and Structures, Vol. 22, 429–443.
  • 99. Sridharan S., Benito R. (1984), Columns static and dynamic interactive buckling, Journal of Engineering Mechanics, ASCE, Vol. 110, 49–65.
  • 100. Stronge W.J. (2000), Impact mechanics, Cambridge University Press, Cambridge, New York, USA.
  • 101. Tamura Y.S., Babcock C.D. (1975), Dynamic stability of cylindrical shell under step loading, Journal of Applied Mechanics, Vol. 42, 190-194.
  • 102. Teter A. (2007), Static and dynamic interactive buckling of isotropic thin–walled closed columns with variable thickness, Thin–Walled Structures, Vol. 45, 936–940.
  • 103. Teter A. (2010), Dynamic. multimode buckling of the thin-walled columns with subjected to in-plane pulse loading, Inter. J. NonLinear Mechanics, Vol. 45, 207-218.
  • 104. Teter A. (2011), Dynamic critical load based on different stability criteria for coupled buckling of columns with stiffened open crosssections, Thin-Walled Structures, Vol. 49, 589-595.
  • 105. Teter A., Kolakowski Z. (2003), Natural frequencies of thin-walled structures with central intermediate stiffeners or/and variable thickness, Thin–Walled Structures Vol. 41, 291–316.
  • 106. Teter A., Kolakowski Z. (2004), Interactive buckling and load carrying capacity of thin–walled beam–columns with intermediate stiffeners, Thin–Walled Structures, Vol. 42, 211–254.
  • 107. Teter A., Kolakowski Z. (2005), Buckling of thin-walled composite structures with intermediate stiffeners, Composite Structures Vol. 69, 421-428.
  • 108. Teter A., Kolakowski Z. (2013), Coupled dynamic buckling of thinwalled composite columns with open cross-sections, Composite Structures, Vol.95, 28–34.
  • 109. Thompson J.M.T., Hunt G.W. (1973), General Theory of Elastic Stability, Wiley, New York, USA.
  • 110. Toneff J.D., Stiemer S.F. and Osterrieder P. (1987), Local and overall buckling in thin-walled beams and columns. Journal of Structural Engineering ASCE, Vol. 113, No. 4, 769-786.
  • 111. Turvey G.J., Zhang Y. (2006), A computational and experimental analysis of the buckling. postbuckling and initial failure of pultruded GRP columns, Computers & Structures, Vol. 84, 1527–1537.
  • 112. Tvergaard V. (1973), Imperfections sensitivity of a wide integrally stiffened panel under compression, International Journal of Solids and Structures, Vol. 9,177-192.
  • 113. Tvergaard V. (1973), Influence of post-buckling behaviour on optimum design of stiffened panels, International Journal of Solids and Structures, Vol. 9, 1519–34.
  • 114. van der Heijden A.M.A. (ed.) (2009), WT. Koiter’s elastic stability of solids and structures, Cambridge University Press, UK.
  • 115. Virgin L.N. (2007), Vibration of axially loaded structures, Cambridge University Press, UK.
  • 116. Volmir S.A. (1972), Nonlinear dynamics of plates and shells, Science, Moscow, Russia.
  • 117. Warminski J., Teter A. (2012), Non-linear parametric vibrations of a composite column un-der uniform compression, Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science, Vol. 226, 1921-1938.
  • 118. Weller T., Abramovich H., Yaffe R. (1989), Dynamic buckling of beams and plates subjected to axial impact, Composite Structures, Vol. 37, 835-851.
  • 119. White D.W., Abel J.F. (1990), Accurate and efficient nonlinear formulation of a nine-node shell element with spurious mode control, Computers and Structures, Vol. 35, 621-641.
  • 120. Wong P.M.H., Wang Y.C. (2007), An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures, Computers & Structures, Vol. 81, 84–95.
  • 121. Zhang T., Liu T., Zhao Y. (2004), Nonlinear dynamic buckling of stiffened plates under in-plane impact load, Journal of Zheijang University Science, Vol. 5, 609-617.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f59a28d-fe95-4c5a-81e3-4576b5476e5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.