PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cooperation of ORC Installation with a Gas Boiler as a Perspective Co-generation System for Households

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Współpraca instalacji ORC z kotłem gazowym jako perspektywiczny układ kogeneracyjny dla gospodarstw domowych
Języki publikacji
EN PL
Abstrakty
EN
This paper reports tests of an innovative micro-CHP unit prototype, consisting of a traditional gas boiler and organic Rankine cycle (ORC), which incorporates original system components such as an axial vapour microturbine, evaporator and condenser. The system co-generates heat and electricity for a single household or a group of households. Electricity is only a by-product during production of heat. While testing the prototype, temperatures of the ORC working fluid and condenser cooling water were measured, as well as the heat flows, electricity output, and the efficiency of the entire system were estimated. It has been shown that the tested system can produce 1 kWe of electricity, and a typical home gas boiler can at the same time act as an autonomous source of heat for heating purposes and for the production of saturated/superheated ethanol vapour in the ORC system. In the authors’ opinion, a commercially available gas boiler, additionally equipped with an ORC module with an ecological working fluid, may be considered a perspective co-generation unit for future households located outside the system heat supply.
PL
W artykule przedstawiono badania innowacyjnej prototypowej jednostki micro-CHP, składającej się z tradycyjnego kotła gazowego i organicznego obiegu Rankine’a (ORC), w skład którego wchodzą oryginalne elementy układu, jak osiowa mikroturbina parowa, parownik i skraplacz. System umożliwia kogeneracyjne wytwarzanie ciepła i energii elektrycznej na potrzeby pojedynczego gospodarstwa domowego lub grupy gospodarstw domowych. Podczas produkcji ciepła energia elektryczna jest wytwarzana jako produkt uboczny. W trakcie badań prototypu zebrano robocze temperatury czynnika roboczego ORC oraz wody chłodzącej skraplacz, oszacowano strumienie ciepła, wytwarzaną energię elektryczną i efektywność całego systemu. Wykazano, że badany układ jest zdolny wygenerować moc elektryczną na poziomie 1 kWe, a typowy domowy kocioł gazowy może równocześnie stanowić autonomiczne źródło ciepła dla celów grzewczych i produkcji pary nasyconej / pary przegrzanej etanolu w systemie ORC. W opinii autorów komercyjnie osiągalny kocioł gazowy, dodatkowo wyposażony w moduł ORC z ekologicznym czynnikiem roboczym, może być uważany za perspektywiczną jednostkę kogeneracyjną dla przyszłych gospodarstw domowych, zlokalizowanych poza siecią ciepła systemowego.
Wydawca
Czasopismo
Rocznik
Tom
Strony
216--221
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology
  • Gdańsk University of Technology
Bibliografia
  • 1. “Communication from the Commission” [online], http://ec.europa.eu/eu2020/pdf/1_PL_ACT_part1_v1.pdf [access: 21.03.2017].
  • 2. “Polityka energetyczna Polski do 2030” [The Polish Energy Policy until 2030], Monitor Polski, No. 2, 2010, pp. 28–149.
  • 3. J. Bargiel et al., “Rola generacji rozproszonej w Krajowym Systemie Elektroenergetycznym na przykładzie gminy Gierałtowice” [The role of distributed generation in the National Power System on the example of Gierałtowice municipality], Acta Energetica, No. 4 (21), 2014, pp. 31–37.
  • 4. Act of 20.02.2015 on renewable energy sources, J. of L. 2015, Item 478.
  • 5. M. Kott, “Efektywność wykorzystania energii elektrycznej w gospodarstwach domowych w kontekście europejskiej polityki energetycznej” [Efficiency of electricity utilization in households in the context of European energy policy], Acta Energetica, No. 3 (25), 2015, pp. 54–59.
  • 6. “Analiza potencjału rynkowego dla technologii – Wysokosprawny płaszczowo-rurowy wymiennik ciepła z techniką mikrostrugową w rurach pęku” [High-performance shell-and-tube heat exchanger with microjet technique in bundle pipes], Expert opinion for CTWT PG, 2015.
  • 7. Directive EU 2012/27 of the European Parliament and the Council of 25.10.2012.
  • 8. “Ormat Technologies” [online], http://www.ormat.com/ [access: 21.03.2017].
  • 9. Turboden [online], http://www.turboden.eu/en/home/index.php [access: 21.03.2017].
  • 10. D. Mikielewicz, J. Mikielewicz, “A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP”, Applied Thermal Engineering, Vol. 30, 2010, pp. 2357–2362.
  • 11. R. Rayegan, Y.X. Tao, “A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)”, Renewable Energy, Vol. 36, 2011, pp. 659–670.
  • 12. M. Jradi, S. Rifat, “Modelling and testing of a hybrid solar-biomass ORC-based micro-CHP system”, International Journal of Energy Research, Vol. 38, 2014, pp. 1039–1052.
  • 13. D. Mikielewicz, J. Mikielewicz, J. Wajs, “Układ turbiny parowej z organicznym obiegiem Rankine’a (ORC) do wykorzystania ciepła odpadowego” [Steam turbine system with organic Rankine cycle (ORC) for waste heat utilization], patent PL 224462, 2013.
  • 14. D. Mikielewicz, J. Wajs, “Organic fash cycle as an alternative to organic rankine cycle for application in domestic heat and power supply system, proceedings” of IV. Conference of WTiUE, Kraków 2016.
  • 15. D. Mikielewicz, J. Mikielewicz, J. Wajs, “Experiences from operation of different expansion devices for application in domestic micro CHP”, Archives of Thermodynamics, Vol. 31, No. 4, 2010, pp. 3–13.
  • 16. D. Ziviani et al., “Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery”, Applied Energy, Vol. 181, 2016, pp. 155–170.
  • 17. K. Kosowski et al., “Mikroturbiny. Badania numeryczne i eksperymentalne” [Microturbines. Numerical and experimental studies], Foundation for the Promotion of the Shipbuilding Industry and Maritime Economy, Gdańsk 2016.
  • 18. W. Włodarski, “Badania eksperymentalne mikroturbozespołów [Experimental studies of micro-turbines”, Foundation for the Promotion of the Shipbuilding Industry and Maritime Economy, Gdańsk 2016.
  • 19. J. Wajs, D. Mikielewicz, “Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger”, Applied Thermal Engineering, Vol. 93, 2016, pp. 1337–1346.
  • 20. J. Wajs, D. Mikielewicz, E. Fornalik-Wajs, “Strugowy wymiennik ciepła o budowie cylindrycznej, zwłaszcza do odzysku energii cieplnej z niskotemperaturowych źródeł odpadowych” [Plate cylindrical jet heat exchanger dedicated to heat recovery, especially from lowtemperature waste sources], patent PL 224494, 2013.
  • 21. J. Wajs, D. Mikielewicz, E. Fornalik-Wajs, “Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions”, Journal of Physics, Conference Series, Vol. 745, 032063, 2016, doi:10.1088/1742-6596/745/3/032063
  • 22. Infinity Turbine [online], http://www.infnityturbine.com/ [access: 21.03.2017].
  • 23. Enogia [online], http://www.enogia.com/ [access: 21/03/2017].
  • 24. D. Mikielewicz, J. Wajs, J. Mikielewicz, “Gas boiler as a heat source for a domestic micro-CHP”, Journal of Power Technologies, Vol. 94, No. 4, 2014, pp. 317–322.
  • 25. D. Mikielewicz, J. Mikielewicz, “Analytical method for calculation of heat source temperature drop for the Organic Rankine Cycle application”, Applied Thermal Engineering, Vol. 63, 2014, pp. 541–550.
  • 26. J. Wajs, D. Mikielewicz, “Minikanałowy płaszczowo-rurowy wymiennika ciepła” [Minichannels shell-and-tube heat exchanger], Technika Chłodnicza i Klimatyzacyjna, No. 6–7, 2010, pp. 255–259.
  • 27. J. Wajs, D. Mikielewicz, B. Jakubowska, “Performance of shell-andtube condenser with minichannels for the micro domestic ORC”, Applied Thermal Engineering [in reviews].
  • 28. J. Wajs, D. Mikielewicz, M. Woźnowska, “Gazowy kocioł kogeneracyjny – badania prototype” [Cogeneration gas boiler – investigations of prototype], Instal, No. 1 (369), 2016, pp. 11–17.
  • 29. J. Wajs et al., “Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module”, Archives of Thermodynamics, Vol. 37, No. 3, 2016, pp. 79–93.
Uwagi
1. Wersja polska na stronach 222-226.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f4f39e1-ed76-42c1-b9aa-1f07a7f5250a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.