PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efektywne usuwanie zanieczyszczeń pochodzenia organicznego i nieorganicznego za pomocą kompozytów na bazie nanocząstek zero wartościowego żelaza n-Fe(0)

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The effective removal of organic and inorganic contaminants using compositions based on nanoparticles of zero valent iron (n-ZVI)
Języki publikacji
PL
Abstrakty
PL
Od prawie trzech dekad inżynierskie nanocząstki (ENM’s, ang. Engineered Nano Materials) ze względu na wykazywaną reaktywność chemiczną, unikatowe właściwości sorpcyjne i katalityczne, elektroniczne, optyczne, magnetyczne są przedmiotem intensywnych badań. Uzyskane wyniki wskazują, że m.in. stanowią one nowe narzędzie do rekultywacji zanieczyszczonych ekosystemów wodnych (wód powierzchniowych i podziemnych), osadów, gruntów, poligonów oraz terenów recyklingu odpadów, w tym elektronicznych. Stosowanie technologii rekultywacji metodą in situ za pomocą kompozytów z udziałem nanocząstek metali, głównie nanocząstek zero wartościowego żelaza n-Fe(0) staje się coraz bardziej powszechne. Proponowane w licznych publikacjach i patentach rozwiązania wskazują na ich uniwersalność, większą efektywność i niższe koszty realizacji procesu rekultywacji w porównaniu z metodami konwencjonalnymi.
EN
For almost three decades, engineered nanoparticles (ENM’s) have been the subject of intensive research due to their chemical reactivity and their sorption, catalytic, electronic, optical, magnetic and other unique properties. The results obtained indicate that they provide a new tool for the remediation of contaminated aquatic ecosystems (surface and groundwater), sediments, soil training grounds as well as waste recycling areas, e.g. for electronic. The application of in situ restorative technologies using compositions involving metal nanoparticles, mainly iron nanoparticles (n-ZVI, nano zero-valent iron) is becoming more common. Solutions proposed in a number of publications and patents show the versality, greater efficiency and lower costs of the remediation process, compared with conventional methods.
Rocznik
Tom
Strony
108--146
Opis fizyczny
Bibliogr. 432 poz., rys., tab.
Twórcy
  • Uniwersytet Ekonomiczny w Poznaniu, Aleja Niepodległości 10, 61-875 Poznań, PL
autor
  • Wojskowa Akademia Techniczna w Warszawie, ul. gen. W. Urbanowicza 2, 01-476 Warszawa, PL
autor
  • Instytut Metali Nieżelaznych, Oddział w Poznaniu, ul. Forteczna 12, 61-362 Poznań, PL
autor
  • Uniwersytet im. A. Mickiewicza w Poznaniu, Wydział Chemii, ul. Umultowska 89b, 61-614 Poznań, PL
  • Instytut Przemysłu Organicznego, ul. Annopol 6, 03-236 Warszawa, PL
Bibliografia
  • [1] Foltynowicz Z., Czajka B., Maranda A., Wachowski L. 2017. Aspekty nanomateriałów w zastosowaniach cywilnych i militarnych. Część I. Pochodzenie, charakterystyka i metody otrzymywania. Materiały Wysokoenergetyczne 9: 5-17.
  • [2] Foltynowicz Z., Czajka B., Maranda A., Wachowski L. 2017. Aspekty nanomateriałów w zastosowaniach cywilnych i militarnych. Cz. II. Zastosowania i obawy wynikające z infiltracji środowiska przyrodniczego. Materiały Wysokoenergetyczne 9: 18-39.
  • [3] Czajka B., Sałaciński T., Wachowski L., Maranda A. 2017. Materiały wysokoenergetyczne (MW) − Innowacje w aspektach środowiska przyrodniczego. Materiały Wysokoenergetyczne 9: 40-55.
  • [4] Roehl K.E., Huttenloch P., Czurda K. 2001. Permeable sorption barriers for in-situ remediation of polluted groundwater − reactive materials and reaction mechanisms. In: Green 3, The Exploitation of Natural Resources and the Consequences. London : Thomas Telford Publishing, pp. 466-473.
  • [5] Moraci N., Calabro P.S. 2010. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J. Environ. Manag. 91: 2336-2341.
  • [6] Comba S., Molfetta D.A., Sethi R. 2011. A Comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut. 215: 595-607.
  • [7] Moraci N., Ielo D., Bilardi S., Calabro P.S. 2016. Modelling long term hydraulic conductivity behaviour of zero valent iron column tests for PRB’s design. Can. Geotech. J. 53: 946-961.
  • [8] Obiri-Nyarko F., Grajales-Mesa J., Malina G. 2014. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111: 243-259.
  • [9] Gavaskar A., Gupta N., Sass B., Janosy R., Hicks J. 2000. Design guidance for application of permeable reactive barriers for groundwater remediation. Columbus (OH) : Battelle.
  • [10] Pawluk K., Lendo-Siwicka M., Wrzesiński G. 2017. Technologie wykonania przepuszczalnych barier reaktywnych. Acta Sci. Pol. Architectura 16 (2): 91-99.
  • [11] Li L., Benson C.H., Lawson E.M. 2006. Modelling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers. J. Contam. Hydrol. 83: 89-121.
  • [12] Pawluk K. 2015. Charakterystyka właściwości mechanicznych wybranych materiałów reaktywnych. Acta Sci. Pol. Architectura 14 (3): 57-66.
  • [13] Pawluk K., Fronczyk J. 2015. Evaluation of single and multilayered reactive zones for heavy metals removal from stormwater. Environ. Technol. 36 (12): 1576-1583.
  • [14] Pawluk K., Fronczyk J., Garbulewski K. 2015. Reactivity of nano zero-valent iron in permeable reactive barriers. Pol. J. Chem. Technol. 17 (1): 7-10.
  • [15] Noubactep C. 2009. On the operating mode of bimetallic systems for environmental remediation. J. Hazard. Mater. 164: 394-395.
  • [16] Noubactep C., Meinrath G., Dietrich P., Sauter M., Merkel B. 2005. Testing the suitability of zerovalent iron materials for reactive walls. Environ. Chem. 2: 71-76.
  • [17] Naidu R., Birke V. 2014. Permeable reactive barrier sustainable groundwater remediation. Boca Raton : CRC Press.
  • [18] Theodore L., Kunz R. 2005. Nanotechnology: Environmental applications and solutions. Hoboken-New York : J. Willey.
  • [19] Noubactep C. 2009. An analysis of the evolution of reactive species in FeO/H2O systems. J. Hazard. Mater. 168: 1626-1631.
  • [20] Bystrzejewska-Piotrowska G., Golimowski J., Urban P.L. 2009. Nanoparticles: Their potential toxicity, waste and environment and management. Waste Management 29: 2587-2595.
  • [21] Crane R.A., Scott T.B. 2012. Nanoscale zero-valent iron: future prospects for an emerging, J. Hazard. Mater.211-12: 112-125.
  • [22] Tratnyek P.G., Johnson R.L. 2006. Nanotechnologies for environmental clean up. Nano Today 1: 44-48.
  • [23] Noubactep C. 2015. Metallic iron for environmental remediation: a review of reviews. Water Res. 45: 114-123.
  • [24] Fu F., Dionysiou D.D., Liu H. 2014. The use of zero-valent iron for groundwater remediation and waste water treatment: A review. J. Hazard. Mater. 267: 194-205.
  • [25] Jortner J., Rao C.N. 2002. Nanostructured advanced materials. Perspectives and directions. Pure Appl. Chem. 74: 1491-1506.
  • [26] Phillips D.H., Van Nooten T., Bastiaens L., Russell M.I., Dickson K., Plant S., Ahad J.M.E., Newton T., Elliot T., Kalin R.M. 2010. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ. Sci. Technol. 44: 3861-3869.
  • [27] O’Carroll D., Sleep B., Krol M., Boparai H., Kocur C. 2013. Nanoscale zero valent iron and bimetalic particles for contaminated site remediation. Adv. Water Resour. 51: 104-122.
  • [28] Zhang W.X. 2003. Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5: 323-332.
  • [29] Xing L., Brink G.H., Chen B., Hofer F., Kooi B.J., Palasantzas G. 2016. Synthesis and morphology iron-iron oxide core-shell nanoparticles produced by high pressure gas concentration. Nanotechnology 27 (21): 215703.
  • [30] Hwang Y.-H., Shin H.-S. 2013. Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate. J. Environ. Sci. 25: 2177-2184.
  • [31] Hwang Y.H., Kim D.G., Shin H.-S. 2011. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Appl. Catal. B: Environ. 105: 144-150.
  • [32] Mueller N.C., Braun J., Bruns J., Černík M., Rissing P, Rickerby D. 2012. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. Res. Int. 9 (2): 550-558.
  • [33] Shih Y.H., Hsu, C.Y., Su Y.F. 2011. Reduction of hexachlorobenzene by nanoscale zerovalent iron:kinetics, pH effect, and degradation mechanism. Separ. Purif. Technol. 76: 268-274.
  • [34] Lien L., Elliott D.W., Sun Y.P., Zhang W.X. 2006. Recent progress in zerovalent iron nanoparticles for groundwater remediation. J. Environ. Eng. Manage. 16 (6): 371-380.
  • [35] Mukherjee R., Kumar R., Sinha A., Lama Y., Saha A.K. 2016. A review on synthesis, characterisation and applications of nano zero valent iron (nZVI) for environmental remediation. Crit. Rev.Environ. Sci. Technol. 46 (5): 443-466.
  • [36] Li X.Q, Elliott D.W., Zhang W. 2006. Zero valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 31: 111-122.
  • [37] Selvaran M., Prema P. 2012. Removal of toxic metal hexavalent chromium[Cr(VI)] from aqueous solution using starch-stabilized nanoscale zerovalent iron as adsorbent: Equilibrium and kinetics. Int. J. Environ. Sci. 2: 1962-1975.
  • [38] Brannon M., Myers T.E. 1997. Review of fate and transport processes of explosives. Technical Report IRRP-97-2. U.S. Army Corps of Engineers.
  • [39] Kim J.S., Shea P.J., Yang J.E., Kim J.E. 2007. Halide salts accelerate degradation of high explosives by Zero-valent iron. Environ. Pollut. 147: 634-641.
  • [40] Glovere D.J., Hoffsommer J.C. 1979. Photolysis of RDX: Identification and Reaction Products, Technical Report NSWCTR-79-349, Naval Surface Weapons Center, Silver Spring, MD.
  • [41] McGrath C.J. 1995. Technical Report IRRP-95-2, U.S. Army Corps of Engineers, Waterways Experiment Station.
  • [42] Rosenblatt D.H., Burrows E.P., Mitchell W.R., Palmer D.L. 1989. Organic explosives and related compounds. In: The Handbook of Environmental Chemistry. (Hutzinger O., Ed.) Berlin : Springer, vol. 3, pp. 195-234.
  • [43] Karnjanapiboonwong A., Zhang B., Freitag C.M., Dobrovolny M., Salice C.J., Smith P.N., Kendall R.J., Anderson T.A. 2009. Reproductive toxicity of nitroaromatics to the cricket. Achela domesticus. Sci. Total Environ. 407 (18): 5046-5049.
  • [44] Hampton M.L., Sisk W.E. 1997. Environmental stability of windrow composting of explosives contaminated soils. in: Emerging Technologies in Hazardous Waste Management IX. (Tedder D.W., Ed.) Washington : Division of Industrial and Engineering Chemistry, A Sm. Chem. Soc., pp. 252-257.
  • [45] NFESC. Toxicity of Marine Sediments and Pore Waters Spiked with Ordnance Compounds. Report Number CR 01-001-ENV, Naval Facilities Engineering Command 2000.
  • [46] Lynch J.C. 2002. Dissolution Kinetics of High Explosive Compounds (TNT, RDX, HMX). ERDC/EL TR-02-23, U.S. Army Engineering Research and Development.
  • [47] Naja G., Halasz A., Thiboutot S., Ampleman G., Havari J. 2008. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent nanoparticles. Environ. Sci. Technol. 42 (12): 4364-4370.
  • [48] Saad R., Thiboutot S., Ampleman G., Dashan W., Hawari J. 2010. Degradation of trinitroglycerin (TNG) using zero-valent iron nanoparticles/nanosilica SBA-15 composite (ZVINs/SBA-15). Chemosphere 81:853-858.
  • [49] Akhavan J. 2004. The Chemistry of Explosives. 2nd Ed., RSC Paperbacks, Cambridge : Royal Society of Chemistry.
  • [50] Zhao Q., Ye Z., Wang Z., Zhang M. 2010. Progress on the treatment of TNT waste water. Environ. Chem. 29 (5): 496-801.
  • [51] Sittig M. 1991. Handbook of Toxicant Hazardous Chemicals. 3rd Ed., Park Ridge (NJ) : Noyes Pub.
  • [52] Brannon J.M., Pennington J.C. 2002. Environmental Fate and Transport Process Descriptors for Explosives. ERDC/ELTR-02-10, U.S. Army Engineer Research and Development Center.
  • [53] Hennecke D., Kordel W., Steinbach K., Herrmann B. 2008. Transformation processes of explosives in natural water/sediment systems. In: Proc. 10th International UFZ Deltares/TNO Conference on Management of Soil, Groundwater and Sediments. Milano, Italy, 24-26 September 2008.
  • [54] Satapanajaru T., Chompuchan C., Suntornchot P., Pengthamkeerati P. 2011. Enhancing decolorization of reactive black 5 and reactive red 198 during nano zerovalent iron treatment. Desalination 266: 218-230.
  • [55] Wen Z., Zhang Y., Dai C. 2014. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. A: Physicochem. Eng. Aspects 457: 433-440.
  • [56] Wu D., Shen Y., Ding A., Qiu M., Yang Q., Zheng S. 2013. Phosphate removal from aqueous solutions by nanoscale zero-valent iron. Environ. Technol. 34: 2663-2669.
  • [57] Allabaksh M.B., Mandal B.K., Kesarla M.K., Kumar K.S., Pamanji S.R. 2010. Preparation of stable zero valent iron nanoparticles using different chelating agents. J. Chem. Pharm. Res. 2 (5): 67-74.
  • [58] Hawari J. 2000. Biodegradation of RDX and HMX: From Basic Research to Field Application. In: Biodegradation of Nitroaromatic Compounds and Explosives. (Spain J.C., Hughes J.B., Knackmuss H.J., Eds.), Boca Raton : CRC Press, pp. 277-310.
  • [59] Zhao J.S., Fournier D., Thiboutot S., Ampleman G., Hawari J. 2004. Biodegradation and bioremediation of explosives. In: Applied Bioremediation and Phytoremediation. (Singh A., Ward O.P., Eds.) Heidelberg-Berlin : Springer Verlag, pp. 55-80.
  • [60] Jones A.M., Greer C.W., Ampleman G., Thiboutot S., Lavigne J., Hawari J. 1995. Biodegradability of higher energetic chemicals under aerobic conditions. In: Proc. 3rd International Conference on in situ and on site Bioreclamation. San Diego, CA.
  • [61] Huang Q., Shi X., Pinto R.A., Petersen E.J., Weber (Jr.) W.J. 2008. Tunable synthesis and inmmobilization of zero-valent iron nanoparticles for environmental applications. Environ. Sci. Technol. 42(Eng.) 191:97-105.
  • [62] U.S. Army Corps of Engineers. Distribution and Fate of Energetic on DoD test and Training Ranges. Final Report ERDC-TR-06-13, Strategic Environment Research and Development Program 2006.
  • [63] Dickinson M., Scott T.B. 2010. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J. Hazard. Mater. 178: 171-179.
  • [64] Liang L., Gu B., Yin X. 1996. Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep. Technol. 6: 111-122.
  • [65] Milkovič O., Janák G., Nižník Š., Longauer S., Frőhlich L. 2010. Iron nanoparticles produced by precipitation phenomena in solid state. Mater. Lett.64: 144-146.
  • [66] Han Y., Yang M.D.Y., Zhang W. 2015. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment. Frontiers Environ. Sci. Eng. 9 (5): 813-822.
  • [67] Ghauch A. 2015. Iron-based metallic systems: an excellent choice for sustainable water treatment. Freib. Online Geosci. 38: 1-80.
  • [68] Cheong S., Ferguson P., Feindel K.W., Hermans I.F., Callaghan P.T., Meyer C., Slocombe A., Su Ch., Cheng F., Yeh Ch., Ingham B., Toney M.F., Tilley R.D. 2011. Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew. Chem. Int. Ed. 50: 4206-4209.
  • [69] Guo J., Guo P., Yu M., Sun Z., Li P., Yang T., Liu J., Zhang L. 2018. Chemical Reduction of Nitrate Using Nanoscale Bimetallic Iron/Copper Particle. Pol. J. Environ. Stud. 27 (5): 2023-2028.
  • [70] Mwakabona H.T., Tchoupe K.N., Noubactep C., Wydra K.D. 2017. Metallic iron for safe drinking water provision: considering a lost knowledge. Water Res. 117: 127-142.
  • [71] Devonshire E. 1890. The purification of water by means of metallic iron. J. Frankl. Inst. 129: 449-461.
  • [72] Baylis J.R. 1926. Prevention of corrosion and “red water”. J. Am. Water Works Assoc. 15: 598-633.
  • [73] Baker M. 1934. Sketch of the history of water treatment. J. Am. Water Works Assoc. 269: 902-938.
  • [74] Ling L., Zhang W.-X. 2014. Sequestration of arsenate in zero-valent iron nanoparticles: Visualisation of intraparticle reactions at Angstrom resolutions. Environ. Sci. Technol. 3 (12): 305-309.
  • [75] Bischof G. 1877. On putrescent organic matter in potable water. I. Proc. R. Soc. London, 26: 179-184.
  • [76] Bischof G. 1878. On putrescent organic matter in potable water. II. Proc R. Soc London, 27, 258-261.
  • [77] Miyajima K., Noubactep C. 2015. Characterizing the impact of sand addition on the efficiency of granular iron for water treatment. Chem. Eng. J. 262: 891-896.
  • [78] Li S., Ding Y., Wang W., Lei H. 2016. A facile method for determining the Fe(0) content and reactivity of zero valent iron. Anal. Methods 8: 1239-1298.
  • [79] Miyajima K., Noubactep C. 2012. Effects of mixing granular iron with sand on the efficiency of methylene blue discoloration. Chem. Eng. J. 200: 33-438.
  • [80] Attia A.A., Girgis B.S., Fathy N.A. 2008. Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch and column studies. Dyes Pigment 76: 282-289.
  • [81] Stefaniuk M., Oleszczuk P., Ok. Y.S. 2016. Review on nanozerovalent iron (nZVI): from synthesis to environmental applications. Chem. Eng. J. 287: 618-632.
  • [82] Miyajima K. 2012. Optimizing the design of metallic iron filters for water treatment. Freib Online Geosci. 32: 60.
  • [83] Arnold W.A., Roberts A.L. 2000. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe0 particles. Environ. Sci. Technol. 34: 1794-1805.
  • [84] Lien H.L., Zhang W.X. 2001. Nanoscale iron particles for complete reduction of chlorinated ethenes, Colloids Surf. A: Physicochem of zero-valent iron Nanoparticles. Colloids Surf. A: Physicochem. Eng. Aspects 308: 60-66.
  • [85] Zhang X.W., Elliott D.W. 2006. Applications of iron nanoparticles for groundwater remediation. Remediation 16: 7-21.
  • [86] Ahmadi M., Mashhon F., Kaveh R., Tarkian F. 2011. Use of mechanically prepared iron nanoparticles for nitrate removal from water. Asian J. Chem. 23 (3): 1205-1208.
  • [87] Bigg T., Judd S.J. 2000. Zero-valent iron for water treatment. Environ. Technol. 21: 661-670.
  • [88] Chen L., Jin S., Fallgren P.H., Swoboda-Colberg N.G., Liu F., Colberg P.J.S. 2012. Electrochemical depassivation of zero-valent iron for trichloroethene reduction. J. Hazard. Mater. (239-240): 265-269.
  • [89] Dai Y., Hu Y., Jiang B., Zou J., Trian G. 2016. Carbothermal synthesis of ordered mesopoprous carbon supported nano zero-valent iron (nZVI) particles with enhanced stability and activity for hexavalent chromium reduction. J. Hazardous Mater. 309: 249-258.
  • [90] Iravani S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem. 13 (10): 2638-2650.
  • [91] Amouzadeh M.T., Tvakkoli V., Dhand K., Rhee K.Y., Park J. 2014. Eco-friendly one pot synthesis of gold decorated reduced grapheme oxide using beer as reducing agent. J. Indust. Eng. Chem. 20 (4): 4327-4331.
  • [92] Yan W., Lien H.L., Koel B.E., Zhang W.X. 2013. Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ. Sci. Process Impacts 15 (1): 63-77.
  • [93] Deng Z., Zhang K.C., Chan L., Liu T.L. 2017. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation. Chemosphere 174: 76-81.
  • [93] Sun Y.P., Li X.Q., Cao J., Zhang W.X., Wang H.P. 2006. Characterization of zero-valent nanoparticles. Adv. Colloid Interface Sci. 120: 47-56.
  • [94] Liu H.B., Chen T.H., Chang D.Y., Chen D., Liu Y., He H.P., Yuan P., Frost R. 2012. Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Mater Chem. Phys. 133: 205-211.
  • [95] Kahoul A., Hammouche A. 2010. Electrochemical performances of FePO4 − positive mass prepared through a new sol-gel method. Ionics 16 (2): 105-109.
  • [96] Chandraekaran P., Viruthagiri G., Srinivasam N. 2012. The effect of various capping agents on the surface modifications of sol-gel synthesised ZnO nanoparticles. J. Alloy Compd. 540: 89-93.
  • [97] Huber L. 2005. Synthesis, properties and applications of iron nanoparticles. Small 1: 482-501.
  • [98] Wright J.S., Sommerdijk N.A.J.M. 2000. Sol-gel Methods: Chemistry and Applications. Adv. Chem. Texts, Ed., CRP Press.
  • [99] Chin SA.B., Yaacob I.I. 2007. Synthesis and characterization of magnetic iron nanoparticle via w/o microemulsion and Massat’s procedure. J. Mater. Process. Technol. 191 (1-3): 235-237.
  • [100] Li L., Fan M., Brown R.C., Van Leeuwen J.H., Wang J., Wang W., Sang Y., Zhang P. 2006. Synthesis, properties and environmental applications of nanoscale iron-based materials: A Review. Crit. Rev. Environ. Sci. Technol. 36 (5): 405-431.
  • [101] Balko B.A., Tratnyek P.G. 1995. Photoeffects on the reduction of carbon tetrachloride by zero-valent iron. J. Phys. Chem. B 102 (8): 1459-1465.
  • [102] Nam S., Tratnyek P.G. 2000. Reduction of azo-dyes by zero-valent iron. Water Res. 34: 837-845.
  • [103] Tratnyek P.G., Grundl T.J., Haderlein S.B. 2011. Aquatic Redox Chemistry. (Eds.) Am. Chem. Soc. Ser., ACS Symp. Ser., Waschington D.C., Vol. 1071.
  • [104] Matos J., Rosales M., Garcia A., Nieto-Delgado C., Rangel-Mendez J.R. 2011. Hybrid photoactive materials from municipal sewage sludge for the photocatalyc degradation of methylene blue. Green Chem. 13 (12): 3431-3439.
  • [105] Chia H.-C., Yeh C.-S. 2007. Hydrothermal synthesis of SnO2 nanoparticles and their gas sensor of alcohol. J. Phys. Chem. C 111: 7256-7259.
  • [106] Zbořil R., Mashlan M., Petridis D. 2002. Iron(III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14:969-982.
  • [107] Noubactep C., Care S. 2010. On nanoscale metallic iron for groundwater remediation. J. Hazard. Mater. 182: 923-927.
  • [108] Chowdhury P.S., Arya P.R., Raha K. 2007. Green synthesis of nanoscopic iron oxide particles: A potential oxidizer in nanoenergetics. Synth. React. Inorg. Met.−Org. Chem. 37 (6): 447-451.
  • [109] Genuino H.C., Huang H., Njagi E.C., Stafford L., Suib S.L. 2012. A review of green synthesis of nanophase inorganic materials for green chemistry applications. Handbook of Green Chemistry. Ed. J. Willey-VCH.
  • [110] Gao S., Shi Y., Zhang S., Jiang K., Yang S., Li Z.E. 2008. Takayama-Muromachi, Biopolymer- assisted green synthesis iron oxide nanoparticles and their magnetic properties. J. Phys. Chem. C 112 (28):10398-10401.
  • [111] Meeks N.D., Smuleac V., Stevens C., Bhattacharyya D. 2012. Iron-based nanoparticles for toxic organic degradation: Silica platform and green synthesis. Ind. Eng. Chem. Res. 51 (28): 9581-9590.
  • [112] Smuleac V., Varma R., Sikdar S., Bhattaryya D. 2011. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J. Membrane Sci. 379 (1-2): 131-137.
  • [113] Aranz S., Chiva-Blanch G., Valderas-Martinez P., Medina-Remón A., Lamuela-Raventós R.M., Estruch R. 2012. Wine, beer, alcohol and poliphenols and cardiovascular disease and cancer. Nutrients 4: 759-781.
  • [114] Nadagouda M.N., Hoag G., Collins R.S., Varma R.S. 2009. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. Cryst. Growth Des. 9 (11): 4979-4983.
  • [115] Manquián-Cerda K., Cruces E., Rubio A.M., Reyes C., Arancibia-Miranda N. 2017. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. Ecotoxicol. Environ. Safety 145: 69-77.
  • [116] Hoag G.E., Collins J.B., Holcomb J.L., Hoag J.R., Nadagouda M.N., Vanna R.S. 2009. Degradation of bromothymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. J. Mater. Chem. 19 (45): 8671-8677.
  • [117] Sharma R.K., Gulati S., Mehta S. 2012. Preparation of gold nanoparticles using tea: a green chemistry experiment. J. Chem. Educ. 89 (10): 1326-1318.
  • [118] Aromal S.A., Philip D. 2012. Green synthesis of gold nanoprticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta Part A. Mol. Bipomol. Spectrosc. 97: 1-5.
  • [119] Njagi E.C., Huang H., Stafford L., Genuino H., Galindo H.M., Collions J.B., Hoag G.E., Suib S.L. 2011. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27 (1): 264-271.
  • [120] Lovley D.R., Stoltz J.F., Nord (Jr.) G.L., Phillips E.J.P. 1987. Anaerobic production of magnetite by dissimilatory iron-reducing microorganism. Nature 330 (6145): 252-254.
  • [121] Bharde A.A., Parikh R.Y., Baidakova M., Jounen S., Hannoyer B., Enoki T., Prasad B.LV., Shouche Y.S., Ogale S., Sastry M. 2008. Bacterial-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulphide nanoparticles. Langmuir 24 (1): 5787-5794.
  • [122] Dhillon G.S., Brar S.K.. Kaur S., Verma M. 2012. Green approach for nanoparticle biosynthesis by fungi current trends and applications. Crit. Rev. Biotechnol. 32 (1): 49-73.
  • [123] Bharde A., Wani A., Shouche Y., Joy P.A., Prasad B.L.V., Sastry M. 2005. Bacterial aerobic synthesis of nanocrystalline magnetite. J. Am. Chem. Soc. 127 (26): 9326-9327.
  • [124] Vigneshwaran N., Ashtaputre N.M., Varadarajan P.V., Nachane R.P., Paralikar K.M., Balasubramanya R.H. 2007. Biological synthesis of silver nanoparticles using the fungus Asspergillus flavus. Mater. Lett. 61 (6):1413-1418.
  • [125] Bhaede A., Rautaray D., Bansal V., Ahmad A., Sarkar I., Yusuf S.M., Sanyal M., Sastry M. 2006. Extracellular biosynthesis of magnetite using fungi. Small 2 (1): 135-141.
  • [126] Lee C.-L., Jou C.-J.G. 2011. Reduced degradation of chlorobenzene in cosolvent solution using nanoscale zero-valent iron with microwave irradiation. Environ. Eng. Sci. 28 (3):191-195.
  • [127] Vitta Y., Piscitelli V., Fernandez A., Gonzalez-Jimenez F., Castillo J. 2011. α-Fe nanoparticles produced by laser ablation: Optical and magnetic properties. Chem. Phys. Lett. 512: 96-98.
  • [128] Kassaee M.Z., Motamedi E., Mikhak A., Rahnemaie R. 2011. Nitrate removal from water using iron nanoparticles produced by arc discharge vs. Reduction. Chem. Eng. J. 166: 490-495.
  • [129] Eljamal R., Eljamal O., Khalil A.M.E., Saha B.B., Matsunaya N. 2018. Improvement of the chemical synthesis efficiency of nanoscsle zero-valen iron particles. J. Environ. Chem. Eng. 6 (4): 4727-4735.
  • [130] Nurmi J.T., Tratnyek P.G., Sarathy V., Baer D.R., Amonette J.E., Pecher K., Wang Ch., Linehan J.C., Matson D.W., Penn R.L., Driessen M.D. 2005. Characterization and Properties of Metallic Iron Nanoparticles: Spectroscopy, Electrochemistry, and Kinetics. Environ. Sci. Technol. 39 (5): 1221-1230.
  • [131] Laumann S., Micić V., Hofmann T. 2014. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Water Res. 250: 70-79.
  • [132] Karri S., Sierra-Alvarez R., Field J.A. 2005. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnol. Bioengin. 92 (7): 810-819.
  • [133] Liou Y.H., Lo S., Kuan W.H., Lin C., Weng S.C. 2006. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res. 40: 2485-2492.
  • [134] Yaron-Marcovich D., Chen Y., Nir S., Prost R. 2005. High resolution electron microscopy stimulated studies of organo-clay nanoparticles. Environ. Sci. Technol. 39 (5): 1231-1238.
  • [135] Herrera-Becerra R., Zorrilla C., Rius J.L., Ascencio J.A. 2008. Electron microscopy characterization of bio-synthesized iron oxide nanoparticles. Appl. Phys. Process. 91 (2): 241-246.
  • [136] Wang C.M., Baer D.R., Engelhard M.H., Amonette J.E., Antony J.J., Qiang Y. 2009. Fine structural features and electronic structure of core-shell structured Fe nanoparticles probed using TEM/STEM and EELS. Microsc. Microanal. 15: 1204-1205.
  • [137] Yamamoto H., Morley M.C., Speitel G.E., Clausen J. 2004. Fate and transport of high explosives in a sandy soil: adsorption and desorption. Soil Sediment Contam. 13 (5): 459-477.
  • [138] Gabbasov R., Polikarpov M., Cherepanov V., Chuev M., Mischenko I., Lomov A., Wang A., Panchenko V. 2015. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles. J. Magn. Mater. 380: 111-116.
  • [139] Luo P., Bailey E.H., Mooney S.J. 2013. Quantification of changes in zero valent iron morphology using X-ray computed tomography. J. Environ. Sci. 25: 2344-2351.
  • [140] Contour J.P., Massies J., Fronius H., Ploog K.J. 1998. An XPS study of the passivating oxide layer produced on GAAs(001) substrate by heating in air above 200 oC. Jap. J. Appl. Phys. 27 (2): L167.
  • [141] Fairley N., Carrick A. 2005. The Casa Cookbook – Part 1: Recipes for XPS data Processing. Cheshire : Acolyte Science.
  • [142] Ramos M.A.V. Yan W., Li X-G., Zhang W.X. 2009. Simultaneous Oxidation and Reduction of Arsenic by Zero-Valent Iron Nanoparticles: Understanding the Significance of the Core-Shell Structure. J. Phys. Chem. C 113 (33): 14591-14594.
  • [143] Joos A., Rűmenapp C., Wagner F.E., Gleich B. 2016. Characterisation of iron oxide nanoparticles by Mössbauer spectroscopy at ambient temperature. J. Magn. Mater. 399: 123-129.
  • [144] Topical Collection on: Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015.
  • [145] Eljamal R., Eljamal O., Khalil A.M.E., Saha B.B., Matsunaya N. 2018. Improvement of the chemical synthesis efficiency of nanoscsle zero-valen iron particles. J. Environ. Chem. Eng. 6 (4): 4727-4735.
  • [146] Li X., Zhang W. 2006. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22: 4638-4642.
  • [147] Lin Y.H., Tseng H.-H., Wey M.-Y., Lin, M.-D. 2010. Characteristics of two types of stabilized nano zero valent iron and transport in porous media. Sci. Total Environ. 408: 2260-2267.
  • [148] Carpenter E.E., Calvin S., Stroud R.M., Harris V.G. 2003. Passivated iron as core-shell nanoparticles. Chem. Mater. 15: 3245-3246.
  • [149] Cornell R.M., Schwertmann U. 2003. The iron oxides. 2nd Ed., J. Wiley, Weinheim.
  • [150] Chen L., Jin S., Fallgren P.H., Liu F., Colberg P.J.S. 2013. Passivation of zero-valent iron by denitrifying bacteria and the impact on trichloroethene reduction in groundwater. Water Sci. Technol. 67: 1254-1259 .
  • [151] Gatcha-Bandjun N., Noubactep C., Loura B.B. 2017. Mitigation of contamination in effluents by metallic iron: the role of iron corrosion products. Environ. Technol. Innov. 8: 71-83.
  • [152] Tepong-Tsinde R., Phukan M., Nassi A., Noubactep C., Ruppert H. 2015. Validating the efficiency of the MB discoloration method for the characterization of FeO/H2O systems using accelerated corrosion by chloride ions. Chem. Eng. J. 279: 353-362.
  • [153] Baker C., Hasanain S.K., Shah S.I. 2004. The Magnetic Behaviour of Iron Oxide Passivated Iron. J. Appl. Phys. 96 (11): 6657-6662.
  • [154] Fung K.K., Qin B., Zhang X.X. 2000. Passivation of α-Fe Nanoparticle by Epitaxial γ-Fe2O3 Shell. Mat. Sci. Eng. A 286 (1): 135-138.
  • [155] Foltynowicz Z., Bardenshtein B., Sängerlaub S., Antvorskov H., Kozak W. 2017. Nanoscale, zero valent iron particles for application as oxygen scavenger in food packaging. J. Food Pack. Shelf Life 11: 74-83
  • [156] Foltynowicz Z. 2018. Nanoiron-Based Composite Oxygen Scavengers for Food Packaging. In: Composites Materials for Food Packaging. (Cirillo G., Kozłowski M.A., Spizzirri U.G., Eds.), Beverly : John Wiley and Sons, Inc. and Scrivener Publishing LLC, pp. 209-234.
  • [157] Lee H., Yoo H.-Y., Choi J., Nam I.-H., Lee S., Lee S., Kim J.-H., Lee C., Lee J. 2014. Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles. Environ. Sci. Technol. 48 (14): 8086-8093.
  • [158] He F., Zhao D. 2005. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39: 3314-3320.
  • [159] Gheju M. 2011. Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut. 222 (1-4): 103-148.
  • [160] Jarrett B.R., Frendo M., Vogan J., Louie A.Y. 2007. Size contolled synthesis of dextran sulphate coated iron oxide nanopartricles for magneric resonance imaging. Nanotechnology 18 (3): 22-34.
  • [161] Tiraferri A., Chen K.-L., Sethi R., Elimelech M. 2008. Reduced aggregation and sedimentation of zerovalent iron nanoparticles in the presence of guar gum. J. Colloid Interface Sci. 324: 71-79.
  • [162] Tiraferri A., Sethi R. 2009. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J. Nanopart. Res. 11: 635-645.
  • [163] Bezbaruah A.N., Krajangpan S., Chisholm B.J., Khan E., Bermudez J.J. 2009. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J. Hazard. Mater. 166:1339-1343.
  • [164] Hojeong K., Hye-Jin H., Juri J., Seong-Hye K., Ji-Won Y. 2010. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 176: 1038-1043.
  • [165] Saleh N., Kim H.J., Phenrat T., Matyjaszewski K., Tilton R.D., Lowry G.V. 2008. Ionic strength and composition affect the mobility of surface-modified FeO nanoparticles in water saturated sand columns. Environ. Sci. Technol. 42: 3349-3355.
  • [166] He F., Zhao D., Liu J., Roberts C.B. 2007. Stabilization of Fe/Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind. Eng. Chem. 46: 29-34.
  • [167] He F., Zhao D., Paul C. 2010. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 44: 2360-2370.
  • [168] Zhou L., Thanh T.L., Gong J., Kim J.H., Kim E.J., Chang Y.S. 2014. Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere 104: 55-61.
  • [169] He F., Zhao D. 2007. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ. Sci. Technol. 41 (17): 6216-6221.
  • [170] Zhu B.-W., Lim T.-T., Feng, J. 2006. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale FeO particles supported on chitosan and silica. Chemosphere 65: 1137-1143.
  • [171] Geng B., Jin Z., Li T., Qi X. 2009. Kinetics of hexavalent chromium removal from water by chitosan-FeO nanoparticles. Chemosphere 75: 825-830.
  • [172] Esfahani A.R., Firouzi A.F., Sayyad G., Kiasat A., Alidokht L., Khataee A.R. 2014. Pb(II) removal from aqueous solution by polyacrylic acid stabilized zero-valent iron nanoparticles: process optimization using response surface methodology. Res. Chem. Intermed. 40: 431-445.
  • [173] Sirk K.M., Saleh N.B., Phenrat T., Kim H.-J., Dufour B., Ok J., Golas P.L., Matyjaszewski K., Lowry G.V., Tilton R.D. 2009. Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ. Sci. Technol. 43: 3803-3808.
  • [174] Hydutsky B.W., Mack E.J., Beckerman B.B., Skluzacek J.M., Mallouk T.E. 2007. Optimization of nanoand microiron transport through sand columns using polyelectrolyte mixtures. Environ. Sci. Technol. 41:6418-6424.
  • [175] Laumann S., Micić V., Hofmann T. 2014. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Water Res. 250: 70-79.
  • [176] Phenrat T., Saleh N., Sirk K., Kim H.J., Tilton R., Lowry G. 2008. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 10 (5): 795-814.
  • [177] Kim H.J. 2009. Transport, reactivity and fate of polyelectrolyte modified zero valent iron nanoparticles used for groundwater remediation in heterogeneous porous media. Doctoral thesis, Carnegie Mellon University, Pittsburgh, PA, USA.
  • [178] Quinn J., Geiger C., Clausen C., Brooks K., Coon C., O’Hara S., Krug T., Major D., Yoon W.S., Gavaskar A., Holdsworth T. 2005. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol. 39: 1309-1318.
  • [179] Zhu B.-W., Lim T.-T., Feng J. 2008. Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial interactions. Environ. Sci. Technol. 42:4513-4519.
  • [180] Zhang M., He F., Zhao D., Hao X. 2011. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Res. 45:2401-2414.
  • [181] Wei Y.T., Wu S.C., Yang S.W., Che C.H., Lien H.L., Huang D.H. 2012. Biodegradable surfactant stabilized nano-scale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J. Hazard. Mater.211-212: 373-380.
  • [182] Chatterjee S., Lim S.-R., Woo S.H. 2010. Removal of reactive black 5 by zero-valent iron modified with various surfactants. Chem. Eng. J. 160: 27-32.
  • [183] Krajangpan S., Kalita H., Chisholm B.J., Bezbaruah A.N. 2012. Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: dispersibility and contaminant treatability. Environ. Sci. Technol. 46 (18):10130-10136.
  • [184] Fan G., Cang L., Qin W., Zhou C., Gomes H.I., Zhou D. 2013. Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep. Purif. Technol. 114: 64-72.
  • [185] Peltier R., Siah W.R., Williams G.V.M., Brimble M.A., Tilley R.D., Wiliams D.E. 2012. Novel phosphourpeptides as surface active agernts in iron nanoparticle synthesis. Aust. J. Chem. 65 (6): 680-685.
  • [186] Xie L., Shang C. 2005. Role of humic acid and quinine model compounds in bromated reduction by zerovalent iron. Environ. Sci. Technol. 39 (4): 1092-1100.
  • [187] Dong H., Lo I.M.C. 2013. Influence of humic acid on the colloidal stability of surface modified nano zerovalent iron. Water Res. 47 (1): 419-427.
  • [188] Choi H., Souhail R., Al-Abed Agarwal S., Dionysios D., Dionysiou D.D. 2008. Synthesis of Reactive Nano-Fe/Pd Bimetallic System-Impregnated Activated Carbon for the Simultaneous Adsorption and Dechlorination of PCBs. Chem. Mater. 20 (11): 3649-3655.
  • [189] Zhang H., Jin Z-H., Lu H., Qin C.-H. 2006. Synthesis of nanoscasle zerovalent iron supported exfoliated graphite for removal of nitrate. T. Nonferr. Metal. Soc. China 16: 345-349.
  • [190] Baikousi M., Georgiou Y., Daikopoulos C., Bourlinos A.B., Filip J., Zbořil R., Deligiannakis Y., Karakassides M. 2015. Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon 93: 636-647.
  • [191] Zou Y.D., Cao X.H., Luo X.P., Liu Y., Hua R., Liu Y.H., Zhang Z.B. 2015. Recycle of U(VI) from aqueous solution by situ phosphorylation mesoporous carbon. J. Radioanal. Nucl. Chem. 306: 515-525.
  • [192] Xiao J., Gao B., Yue Q., Sun Y., Kong J., Gao Y., Li Q. 2015. Characterization of nanoscale zero-valent iron supported on granular activated carbon and its application in removal of acrylonitrile from aqueous solution. J. Taiwan Inst. Chem. Eng. 55: 152-158.
  • [193] Beckingham B., Ghosh U., 2011. Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments. Environ. Sci. Technol. 45: 10567-10574.
  • [194] Ren X.M., Li J.X., Tan X.L., Wang X.K. 2013. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans. 42: 5266-5274.
  • [195] Xiao J.N., Gao B.Y., Yue Q.Y., Gao Y., Li Q. 2015. Removal of trihalomethanes from reclaimedwater by original and modified nanoscale zero-valent iron: characterization, kinetics and mechanism. Chem. Eng. J. 262: 1226-1236.
  • [196] Karabelli D., Unal S., Shahnan T., Eroglu A.E. 2011. Preparation and characterization of alumina supported on nanoparticles and its application for the removal of aqueous Cu2+ ions. Chem. Eng. J. 168 (2): 970-984.
  • [197] Petala E., Dimos K., Douvalis A., Bakas T., Tucek J., Zbořil R., Karakassides M.A. 2013. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. J. Hazard. Mater. 261: 295-306.
  • [198] Zhan J.J., Zheng T., Piringer G., Day C., Mcpherson G.L., Lu Y.F., Papadopoulos K., John V.T. 2008. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environ. Sci. Technol. 42: 8871-8876.
  • [199] Li J.S., Li H.J, Zhu Y., Hao Y.X., Sun X.Y., Wang L.J. 2011. Dual roles of amphiphilic triblock copolymer P123 in synthesis of α-Fe nanoparticle/ordered mesoporous silica composites. Appl. Surf. Sci. 258:657-661.
  • [200] Jiang Z., Lv L., Zhang W., Du Q., Pan B., Yang L., Zhang Q. 2011. Nitrate reduction using nanosized zerovalent iron supported by polystyrene resins: Role of surface functional groups. Water Res. 45: 2191-2198.
  • [201] Shu H.Y., Chang M.C., Chen C.C., Chen P.E. 2010. Using resin supported nano zero-valent iron particles for decoloration of acid blue 113 azo dye solution. J. Hazard. Mater. 184: 499-505.
  • [202] Zhao Z., Liu J.F., Tai C., Zhou Q.F., Hu J.T., Jiang G.B. 2008. Rapid decolorization of water soluble azodyes by nanosized zero-valent iron immobilizedon the exchange resin. Sci. China Series B: Chem. 51:186-192.
  • [203] Xi Y., Megharaj M., Naidu R. 2011. Dispersion of zerovalent iron nanoparticles onto bentonites and use of these catalysts for orange II decolourization. Appl. Clay Sci. 53: 716-722.
  • [204] Shi L., Lin Y., Zhang X., Chen Z. 2011. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chem. Eng. J. 171: 612-617.
  • [205] Zhang Y., Li Y.M., Zheng X.M. 2011. Removal of atrazine by nanoscale zero valent iron supported on organo- bentonite. Sci. Total Environ. 409: 625-630.
  • [206] Li Y.M., Cheng W., Sheng G.D., Li J.F., Dong H.P., Chen Y., Zhu L.Z. 2015. Synergetic effect of a pillared bentonite support on Se(VI) removal by nanoscale zero valent iron. Appl. Catal. B 174-175: 329-335.
  • [207] Chen Z.X., Jin X.Y., Chen Z., Megharaj M., Naidu R. 2011. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J. Colloid Interface Sci. 363: 601-607.
  • [208] Bhowmick S., Chakraborty S., Mondal P., Renterghem W.V., Berghe S.V.D., Ross G.R., Chatterjee D., Iglesias M. 2014. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution. Chem. Eng. J. 243: 11-23
  • [209] Chen C.L., Yang X., Wei J., Tan X.L., Wang X.K. 2013. Eu(III) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study. J. Colloid Interface Sci. 393: 249-256.
  • [210] Yuan N.; Zhang G., Guo S., Wan Z. 2016. Enhanced ultrasound assisted degradation of methyl orange and metronidazole by rectorite supported nanoscale zero-valent iron. Ultrason. Sonochem. 228: 62-68.
  • [211] Üzüm C., Shahwan T., Eroglu A.E., Hallam K.R., Scott T.B., Lieberwirth I. 2009. Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl. Clay Sci. 43: 172-181.
  • [212] Baltazar S.E., García A., Muñoz-Lira D., Sepúlveda P., Miranda A., Arancibia N.E., Drullinsky D.R. 2016. Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 301: 371-380.
  • [213] Bilardi S., Calabro P.S., Care S., Moraci N., Noubactep C. 2013. Improving the sustainability of granular iron/pumice systems for water treatment. J. Environ. Manag. 121: 133-41.
  • [214] Bilardi S., Calabro P.S., Care S., Moraci N., Noubactep C. 2013. Effect of pumice and sand on the sustainability of granular iron beds for the removal of CuII, NiII, and ZnII. Clean Soil Air Water 41: 835-843.
  • [215] Neuwoehner J., Erlenkaemper B., Schofer A., Steinbach K., Hund-Rinke K., Eisentraeger A. 2009. Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives. Environ. Toxicol. Chem. 12: 78-85.
  • [216] Krol M.M., Oleniuk A.J., Sleep B.E., Bennett P., Xiong Z. 2013. A field validated model for in situ transport of polymer-stabilized n-ZVI and implications for subsurface injection. Environ. Sci. Technol. 47 (13): 7332-7440.
  • [217] Krajangpan S., Jarabek L., Jepperson J., Chisholm B., Bezbaruah A. 2008. Polymer modified iron nanoparticles for environmental remediation. Polym. Preprints 49: 921-922.
  • [218] Lachance B., Renoux A.Y., Sarrazin M., Hawari J., Sunahara G.I. 2004. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55 (10): 1339-1348.
  • [219] Cardarelli F. 2008. Materials Handbook: A Concise Desktop Reference. New York : Springer.
  • [220] Saleh N., Sirk K., Liu Y., Phenrat T., Dufour B., Matyjaszewski K., Tilton R.D., Lowry G.V. 2007. Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ. Eng. Sci. 24: 45-57.
  • [221] Liu Z., Zhang F., Kent Hoekman S., Liu T., Gai C., Peng N. 2016. Homogeneously dispersed zerovalent iron nanoparticles supported on hydrochar-derived porous carbon: Simple, in situ synthesis and use for dechlorination of PCBs. Sustain. Chem. Eng. 4 (6): 3261-3267.
  • [222] Saleh N., Phenrat T., Sirk K., Dufour B., Ok J., Sarbu T., Matyjaszewski K., Tilton R.D., Lowry G.V. 2005. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett. 5:2489-2494.
  • [223] Chien S., Pieper R., Webster D.C., Singh J. 2005. Triblock copolimers: Synthesis characterization, and delivery of a model protein. Inter. J. Pharm. 288 (2): 207-218.
  • [224] Sun Y.B., Ding C.C., Cheng W.C., Wang X.K. 2014. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanosacle zerovalent iron. J. Hazard. Mater. 280: 399-408.
  • [225] Sheng G.D., Li Y.M., Yang X., Ren X.M., Yang S.T., Hu J., Wang X.K. 2012. Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Adv. 2: 12400-12407.
  • [226] Yang X., Chen C.L., Li J.X., Zhao G.X., Ren X.M., Wang X.K. 2012. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv.2 (23): 8821-8826.
  • [227] Hu J., Yang S.T., Wang X.K. 2012. Adsorption of Cu(II) on β-cyclodextrin modified multiwall carbon nanotube/iron oxides in the absence/presence of fulvic acid. J. Chem. Technol. Biotechnol. 87: 673-681.
  • [228] Shao D.D., Chen C.L., Wang X.K. 2012. Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II). Chem. Eng. J. 185-186: 144-150.
  • [229] Sheng G.D., Alsaedi A., Shammakh W., Monaquel S., Sheng J., Wang X.K., Li H., Huang Y.Y. 2016. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon 99: 123-130.
  • [230] Wen T., Wu X.L., Tan X.L. Wang X.K., Xu A.W. 2013. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions. ACS Appl. Mater. Interfaces 5: 3304-3311.
  • [231] Tan X.L., Fang M., Ren X.M., Mei H.Y., Shao D.D., Wang X.K. 2014. Effect of silicate on the formation and stability of Ni-Al LDH at the gamma-Al2O3 surface. Environ. Sci. Technol. 48: 13138-13145.
  • [232] Liu M.H., Wang Y.H., Chen L.T., Zhang Y., Lin Z. 2015. Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl. Mater. Interfaces 7: 7961-7969.
  • [233] Zhao Y., Zhao D.L., Chen C.L., Wang X.K. 2013. Enhanced photoreduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J. Colloid Interface Sci. 405: 211-217.
  • [234] Kim S.A., Kannan S.K., Lee K.J., Park Y.J., Shea P.J., Lee W.H., Kim H.M., Oh B.T. 2013. Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem. Eng. J. 217:54-60.
  • [235] Cattaneo M.V., Pennington J.C., Brannon J.M., Gunnison D., Harrelson D.W., Zakikhani M. 2000. Natural attenuation of explosives. In: Remediation of Hazardous Waste Contaminated Soils. New York : Marcel Dekker.
  • [236] Bian S.W., Mudunkotuwa I.A., Rupasinghe T., Grassian V.H. 2011. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27: 6059-6068.
  • [237] Ryu A., Jeong S., Jang A., Choi H. 2011. Reduction of highly concentrated nitrate using nanoscale zerovalent valent iron: Effects of aggregation and catalyst on reactivity. Appl. Catal. B: Environ. 105: 128-135.
  • [238] Shimmin R.G., Schoch A.B., Braun P.V. 2004. Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols. Langmuir 20 (13): 5613-5620.
  • [239] Signorini L., Pasquini L., Savini L., Carboni R., Boscherini F., Bonetti E., Giglia A., Pedio M. 2003. Sizedependent oxidation in iron/iron oxide core-shell nanoparticles. Phys. Rev. B 68: 195423.
  • [240] Noubactep C., Care S. 2010. Dimensioning metallic iron beds for efficient contaminant removal. Chem. Eng. J. 163: 454-460.
  • [241] Jandacka P., Alexa P., Pistora J., Li J., Vojtkova H., Hendrych A. 2015. Size distributions of nanoparticles from magnetotactic bacteria as signatures of biologically controlled mineralization. Am. Minerol. 98:2105-2114.
  • [242] Dong J., Zhao Y., Zhao R., Zhou R. 2010. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron. J. Environ. Sci. 22: 1741-1747.
  • [243] Hofstetter T.B., Hejman C.G., Haderlein S.B., Holliger C. 1999. Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing substance conditions. Environ. Sci. Technol. 133:1479-1487.
  • [244] Kadar E., Tarran G.A., Jha A.N., Al-Subiai S.N. 2011. Stabilization of engineered zero-valent nanoiron with Na-acrylic copolymer enhances spermiotoxicity. Environ. Sci. Technol. 45 (8): 3245-3251.
  • [245] Qiu X., Fang Z., Yan X., Cheng W., Lin K. 2013. Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromium contaminated watershed. Chem. Eng. J. 220: 61-66.
  • [246] Yang G.C.C., Tu H., Hung C. 2007. Stability of nanoiron slurries and their transport in the subsurface. Environ. Separ. Purif. Technol. 58: 166-172.
  • [247] Wang C.M., Baer D.R., Amonette J.E., Engelhard M.H., Antony J., Qiang Y. 2009. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131:8824-8829.
  • [248] Ren L., Zhang J., Li Y., Zhang C. 2011. Preparation and evaluation of cattail fiber-based activated carbon for 2,4-dichlorophenol and 2,4,6-trichlorophenol removal. Chem. Eng. J. 168 (2): 553-561.
  • [249] Cirwertny D.M., Bransford S.J., Roberts A.L. 2007. Influence of the Oxidizing Species on the Reactivity of Iron-Based Bimetallic Reductants. Environ. Sci. Technol. 41 (12): 3734-3740.
  • [250] Phelan T.Y.J., Lemke L.D., Bradford S.A., O’Caroll D.M., Abriola L.M. 2004. Influence of textural and wettability variations on predictions of DNAPL persistence and plume development in saturated porous media. Adv. Water Res. 27 (4): 411-427.
  • [251] Kocur C.M., O’Caroll D.M., Sleep B.E. 2013. Impact on nZVI mobility in porous media. J. Contam. Hydrol. 145: 17-25.
  • [252] Gatcha-Bandjun N., Noubactep C., Loura B.B. 2017. Mitigation of contamination in effluents by metallic iron: the role of iron corrosion products. Environ. Technol. Innov. 8: 71-83.
  • [253] Johnson R.L., Johnson G.O., Nurmi J.T., Tratnyek P.G. 2009. Natural organic matter enhanced mobility of nano zerovalent iron. Environ. Sci. Technol. 43: 5455-5460.
  • [254] Noubactep C., Licha T., Scott T.B., Fall M., Sauter M. 2009. Exploring the influence of operational parameters on the reactivity of elemental iron materials. J. Hazard. Mater. 172: 943-951.
  • [255] Kubaniova D., Cesnek M., Milkovic O., Kohout J., Miglierini M. 2016. Composition of α-Fe nanoparticles precipitated from CuFe alloy studied by hyperfine interactions. In: Proc. Int. Conf. on Hyperfine Interaction and their Application (HYPERFINE 2016), Lueven, Belgium, 3-8 July 2016.
  • [256] Huang Y.Y., Liu F., Li H.D. 2009. Degradation of tetrachloromethane and tetrachloroethene by Ni/Fe bimetallick particles. J. Phys. Conf. Ser. 188 (1): 42-49.
  • [257] Kuang Y., Zhou Y., Chen Z., Megharaj M., Naidu R. 2013. Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresour. Technol. 136: 588-594.
  • [258] Laumann S., Micić V., Hofmann T. 2014. Mobility enhancement of nanoscale zero-valent iron in arbonate porous media through co-injection of polyelectrolytes. Water Res. 250: 70-79.
  • [259] Noubactep C. 2009. On the operating mode of bimetallic systems for environmental remediation. J. Hazard. Mater. 164: 394-395.
  • [260] Tee Y., Bachas L., Bhattacharyya D. 2009. Degradation of trichloroethylene and dichlorophenyls by ironbased bimetallic nanoparticles. J. Phys. Chem. 113 (22): 9454-9464.
  • [261] Zhuang Y., Ahn S., Seyfferth A.L., Masue-Slowey Y., Fendorf S., Luthy, R.G. 2011. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ. Sci. Technol. 45: 4896-4903.
  • [262] Alymov M.I., Rubstov N.M., Seplyarski B.S., Zelenski V.A., Ankundinov A.B. 2017. Preparation and characterization of iron nanoparticles protected by an oxide film. Inorg. Mat. 53 (9): 911-915.
  • [263] Lasek J.A. 2014. Investigations of the reduction of NO to N2 by reaction with Fe under fuel-rich and oxidative atmosphere. Heat Mass Transf. 50: 933-943.
  • [264] Noubactep C. 2010. The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 36: 663-670.
  • [265] Kolditz L. 1994. Chemia nieorganiczna. Warszawa : PWN.
  • [266] O’Hannesin S.F., Gillham R.W. 1998. Long-term performance of an in situ ‘ironwall’ for remediation of VOCs. Groundwater 36: 164-170.
  • [267] Reardon J.E. 1995. Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen rates. Environ. Sci. Technol. 29: 2936-2945
  • [268] Shih Y.H., Hsu C.Y., Su Y.F. 2011. Reduction of hexachlorobenzene by nanoscale zerovalent iron: kinetics, pH effect, and degradation mechanism. Separ. Purif. Technol. 76: 268-274.
  • [269] Shen J.M., Chen Z.L., Xu Z.Z., Li X.Y., Xu B.B., Qi F. 2008. Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. J. Hazard. Mater. 152: 1325-1331.
  • [270] Sinha A., Bose P. 2006. Dehalogenation of 2-chloronapthalene by cast iron. Water Air Soil Poll. 172: 375-390.
  • [271] Tratnyek P.G., Salter A.J. 2010. Response to comment on degradation of 1,2,3-trichloropropane (TCP):hydrolysis, elimination, and reduction by iron and zinc. Environ. Sci. Technol. 44: 3198-3199.
  • [272] Balko B.A., Tratnyek P.G. 1998. Photoeffects on the reduction of carbon tetrachloride by zero-valent iron.J. Phys. Chem. B 102: 1459-1465.
  • [273] Matheson L.J., Tratnyek P.G. 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28: 2045-2053.
  • [274] Deng B., Hu S. 2001. Reductive dechlorination of chlorinated solvents on zerovalent iron surfaces. In: Physicochemical groundwater remediation. (Smith J.A., Burns S.E., Eds.) New York : Kluwer Academic, pp. 139-159.
  • [275] Gillham R.W., O’Hannesin S.F. 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron in ground water. Groundwater 32: 958-967.
  • [276] Orth W.S., Gillham R.W. 1996. Dechlorination of trichloroethene in aqueous solution using FeO. Environ. Sci. Technol. 30: 66-71.
  • [277] Liang L., Gu B., Yin X. 1996. Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep. Technol. 6: 111-122.
  • [278] Puls R.W., Paul C.J., Powell R.M. 1999. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl. Geochem. 14: 989-1000.
  • [279] Bojic A., Bojic D., Andjelkovic T. 2009. Removal of Cu2+ and Zn2+ from model wastewaters by spontaneus, reduction-coagulation process in flow conditions. J. Hazard. Mater. 168: 813-819.
  • [280] Noubactep C. 2008. A critical review on the mechanism of contaminant removal in FeO-H2O systems. Environ. Technol. 29: 909-920.
  • [281] Noubactep C. 2012. Investigating the processes of contaminant removal in FeO/H2O systems. Korean J. Chem. Eng. 29: 1050-1056.
  • [282] Ramos M.A.V., Yan W., Li X-G., Zhang W.X. 2009. Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction-coagulation process in flow conditions. J. Phys. Chem.C 113: 14591-14594.
  • [283] Ludwig R.D., Su C., Lee T.R., Wilkin R.T., Acree S.D., Ross R.R., Keeley A. 2007. In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation. Environ. Sci. Technol. 41: 5299-5305.
  • [284] Bojic A., Purenovic M., Bojic D. 2004. Removal of chromium(VI) from water by micro-alloyed aluminium based composite in flow conditions. Water SA 30: 353-359.
  • [285] Ding C.C., Cheng W.C., Sun B., Wang X.K. 2015. Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe(0). Geochim. Cosmochim. Acta 165: 86-107.
  • [286] Sun Y.B., Ding C.C., Cheng W.C., Wang X.K. 2014. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanosacle zerovalent iron. J. Hazard. Mater. 280: 399-408.
  • [287] Isac L., Arnáiz C. 2005. Biomass characterization and biological activity tests in wastewater treatment. Applicability to the assessment of inhibitory and toxic pollutants. Afinidad. 62 (517): 197-210.
  • [288] Fajardo C., Saccà M.L., Martinez-Gomariz M., Costa G., Nande M., Martin M. 2013. Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) articles. Chemosphere 93 (6): 1077-1083.
  • [289] Fajardo C., Ortiz L.T., Rodriguez-Membibre M.L., Nande M., Lobo M.C., Martin M. 2012. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality:a molecular approach. Chemosphere 86 (8): 802-808.
  • [290] Bruton T.A., Halden R.U., Rolf U. 2014. Effect of nanoscale zero-valent iron treatment on biological reductive dechlorination, A review of current understanding and research needs. Crit. Rev. Environ. Sci. Technol. 45 (11): 1148-1175.
  • [291] Chen K.F., Yeh T.Y., Kao C.M., Sung W.P., Lin C.C. 2012. Application of nanoscale zero-valent iron (nZVI) to enhance microbial reductive dechlorination of TCE: a feasibility study. Curr. Nanosci. 8 (1):55-59.
  • [292] Huang L., Shi Y., Wang N., Dong Y. 2014. Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation 25: 615-632.
  • [293] Kirschling T.L., Gregory K.B., Minkley J.E.G., Lowry G.V., Tilton R.D. 2010. Impact of nanoscale zerovalent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ. Sci. Technol. 44: 3474-3480.
  • [294] Shin K., Cha D.K. 2008. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72: 257-262.
  • [295] Liu Y., Li S., Chen Z., Megharaj M., Naidu R. 2014. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere 108: 426-432.
  • [296] Dontsova K.M., Pennington J.C., Hayes C., Simunek J., Williford C.W. 2009. Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil. Chemosphere 77 (4): 597-603.
  • [297] Gottinger A.M., McMartin D.W., Wild D.J., Moldovan B. 2013. Integration of zero valent iron sand beds into biological treatment systems for uranium removal from drinking water wells in rural Canada. Can. J. Civ. Eng. 40: 945-950.
  • [298] Jagadevan S., Jayamurthy M., Dobson P., Thompson I.P. 2012. A novel hybrid nano zerovalent iron initiated oxidation-biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Res. 46 (7): 2395-2404.
  • [299] Pokhrel D., Viraraghavan T. 2009. Biological filtration for removal of arsenic from drinking water, J. Environ. Manag. 90: 1956-1961.
  • [300] Camargo P.H.C., Satyanarayana K.G., Wypych F. 2009. Nanocomposites: synthesis, structure, propertiers and new application opportunities. Mater. Res. 12 (1): 1-39.
  • [301] Beristain-Montiel L., Gómez J., Monroy O., Cuervo-López F.M., Ramírez-Vives F. 2012. Biodegradation of 2-chlorophenol (2CP) in an anaerobic sequencing batch reactor (ASBR). Environ. Sci. Technol.65 (10):1721-1728.
  • [302] You Y., Han J., Chiu P.C., Jin Y. 2005. Removal and inactivation of waterborne viruses using zero valent iron. Environ. Sci. Technol. 39: 9263-9269.
  • [303] Li Z., Greden K., Alvarez P.J.J., Gregory K.B., Lowry G.V. 2010. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to Eschericia coli. coli. Environ. Sci. Technol. 44:3462-3467.
  • [304] Kim J.V., Park J.K., Lee C., Nelson K.L., Yoon J. 2010. Inactivation of Escherichia coli by nanoparticulate zero-valent iron an ferrousian. Appl. Environ. Microbiol. 76: 7668-7662.
  • [305] Lee C., Kim J.Y., Lee W.I., Nelson K.L., Yoon J., Sedlak D.L. 2008. Bactericidal effect of zerovalent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 42: 4927-4933.
  • [306] Lovley D.R., Stoltz J.F., Nord (Jr.) G.L., Phillips E.J.P. 1987. Anaerobic production of magnetite by dissimilatory iron-reducing microorganism. Nature 330 (6145): 252-254.
  • [307] Liu J., Vipulandan C., Cooper T.T., Vipulandan G. 2013. Effect of nanoparticles on biosurfactant production. J. Nanoparticles Res. 1: 4927-4933.
  • [308] Craig H.D., Sisk W.E., Nelson M.D., Dana W.H. 1995. Bioremediation of Explosives-contaminated Soils:A Status Review. Manhattan (KS) : Great Plains and Rocky Mountain Hazardous Substance Research Center, Kansas State University, p. 164.
  • [309] Nejidat A., Kafka L., Tekoach Y., Ronen Z. 2008. Effect of organic and inorganic nitrogeneaus compounds on RDX degradation and cytochrome P-400 expression in Rhadococcus strain YH1. Biodegradation 19 (8): 13-320
  • [310] Bojic A., Purenovic M., Bojic D., Andjelkovic T. 2007. Dehalogenation of trihalomethanes by a microalloyed aluminium composite under flow conditions. Water SA 33(2): 297-304.
  • [311] Babuponnusami A., Muthukumar K. 2012. Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Separ. Purif. Technol. 98: 130-135.
  • [312] Birke V., Schuett C., Burmeier H., Friedrich H.-J. 2014. Impact of trace elements and impurities in technical zero-valent iron brands on reductive dechlorination of chlorinated ethenes in groundwater. In: Permeable reactive barrier sustainable groundwater remediation. (Naidu R., Birke V., Eds.), Boca Raton : CRC Press, pp. 87-98.
  • [313] Lien H.L., Zhang W.X. 2001 Nanoscale iron particles for complete reduction of chlorinated ethenes.Colloids Surf. A: Physicochem. Eng. Aspects 191: 97-105.
  • [314] Liu Y.Q., Majetich S.A., Tilton R.D., Sholl D.S., Lowry G.V. 2005. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39: 1338-1345.
  • [315] Liu Y., Phenrat T., Lowry G.V. 2007. Effect of TCE concentration and dissolved groundwater solutes on nZVI-promoted TCE dechlorination and H2 evolution. Environ. Sci. Technol. 41: 7881-7887.
  • [316] Liu Y., Shen J.M., Chen Z.L., Liu Y. 2011. Degradation of p-chloronitrobenzene in drinking water by manganese silicate catalyzed ozonation. Desalination 279: 219-224.
  • [317] Shu H.Y., Chang M.C., Chen C.C., Chen P.E. 2010. Using resin supported nano zero-valent iron particles for decoloration of acid blue 113 azo dye solution. J. Hazard. Mater. 184: 499-505.
  • [318] Shu H.Y., Chang M.C., Yu H.H., Chen W.H. 2007. Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles. J. Colloid Interface Sci. 314: 89-97.
  • [319] Poursaberi T., Konoz E., Sarrafi A.H.M., Hassanisadi M., Hajifathli F. 2012. Application of nanoscale zero-valent iron in the remediation of DDT from contaminated water. Chem. Sci. Trans. 1: 658-668.
  • [320] El-Temsah Y.S., Joner E.J. 2013. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92 (1): 31-137.
  • [321] Wang L., Yang J., Li Y.M., Lv J., Zou J. 2016. Removal of chlorpheniramine in a nanoscale zero-valent iron induced heterogeneous fenton system: influencing factor sand degradation intermediates. Chem. Eng. J. 284: 1058-1067.
  • [322] Fang Z.Q., Chen J.H., Qiu X.H., Qiu X.Q., Cheng W., Zhu L.C. 2011. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268: 60-67.
  • [323] Fang Z., Qiu X.,Chen J., Qiu X. 2010. Degradation of metronidazole by nanoscalezero-valent metal prepared from steel pickling waste liquor. Appl. Catal. B: Environ. 100: 221-228.
  • [324] Chen J.H., Qiu X.Q., Fang, Z.Q., Yang M., Pokeung T., Gu, F.L., Cheng W., Lan B.Y. 2012. Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem. Eng. J. 181-182: 113-119.
  • [325] Chen H., Luo H.J., Lan Y.C., Dong T.T., Hu B.J., Wang Y.P. 2011. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero-valent iron. J. Hazard. Mater. 192: 44-53.
  • [326] Babuponnusami A., Muthukumar K. 2012. Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Separ. Purif. Technol. 98: 130-135.
  • [237] Iurascu B., Siminiceanu J., Vione D., Vicente M.A., Gil A. 2009. Phenol degradation in water through a heterogeneous photo-Fenton process catalysed by Fe-treated laponite. Water Res. 43: 1313-1322.
  • [328] Liao C.J., Chung T.L., Chen W., Kuo S.L. 2007. Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide. J. Mol. Catal. A: Chem. 265: 189-194.
  • [329] Calderon B., Aracil I., Fullana A. 2012. Deodorization of a gas stream containing dimethyl disulfide with zero-valent iron nanoparticles. Chem. Eng. J. 183: 325-331.
  • [330] Hu J., Lo I.M., Chen G. 2004. Removal of Cr(VI) by magnetite nanoparticle. Water Sci. Technol. 50:139-146.
  • [331] Lv X., Xu J., Jiang G., Tang J., Cut X. 2012. Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nano-composites for the removal of chromium(VI) from aqueous solutions. J. Colloid Interface Sci. 369:460-469.
  • [332] Bose P., Glaze W.H., Maddox D.S. 1998. Degradation of RDX by various advanced oxidation processes:II. Organic by-products. Water Res. 32 (4): 1005-1018.
  • [333] Ponder S.M., Darab J.G., Mallouk T.E. 2000. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nano-scale zero-valent iron. Water Sci. Technol. 34: 2564-2569.
  • [334] Selvaran M., Prema P. 2012. Removal of toxic metal hexavalent chromium[Cr(VI)] from aqueous solution using starch stabilized nanoscale zerovalent iron as adsorbent: Equilibrium and kinetics. Int. J. Environ. Sci. 2: 1962-975.
  • [335] Zou Y., Wang X., Khan A., Wang P., Liu Y., Ahmed A., Hayat T., Wang X. 2016. Environmental Remediation and Application of Nanoscale Zero Valent Iron and its Composites for the Removal of Heavy Metal Ions: A Review. Environ. Sci. Technol. Crit. Rev. 50: 7290-7304.
  • [336] Zhang S.W., Li J. X., Wen T., Xu J.Z., Wang X.K. 2014. Magnetic Fe3O4@NiO hierarchical structures: preparation and their excellent As(V) and Cr(VI) removal capabilities. RSC Adv. 3: 2754-2764.
  • [337] Esfahani A.R., Firouzi A.F., Sayyad G., Kiasat A., Alidokht L., Khataee A.R. 2014. Pb(II) removal from aqueous solution by polyacrylic acid stabilized zero-valent iron nanoparticles: process optimization using response surface methodology. Res. Chem. Intermed. 40: 431-445.
  • [338] Bopari H.K., Joseph M., O’Caroll D.M. 2013. Cadmium (Cd2+) removal by nano zero-valent iron: Effects of solution chemistry and surface complexation modelling. Environ. Sci. Pollution Res. 20 (9): 6210-6221.
  • [339] Bopari H.K., Joseph M., O’Caroll D.M. 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption on nano zero-valent iron particles. J. Hazard. Mater. 186 (1): 458-465.
  • [340] Nazli E. 2008. Characterization of the adsorption behavior of aqueous Cd(II) and Ni(II) ions on nanoparticles of zero-valent iron. Master’s thesis, School of Engineering and Science of Izmir Institute of Technology, Turkey.
  • [341] Morgada M.E., Levy I.K., Salomone V., Farias S.S., Lopez G., Litter, I.M. 2009. Arsenic(V) removal with nanoparticulate zerovalent iron: Effect of UV light and humic acids. Catal. Today 143: 261-268.
  • [342] Kanel S.R., Nepal D., Manning B., Choi, H. 2007. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J. Nanopart. Res. 9: 725-735.
  • [343] Bang S., Johnson M.D., Korfiatis G.P., Meng X. 2005. Chemical reaction between arsenic and zero-valent iron. Water Res. J. 39: 763-770.
  • [344] Giasuddin A.B., Kanel S.R., Choi H. 2007. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ. Sci. Technol. 41: 2022-2027.
  • [345] Kanel S.R., Greneche J.M., Choi H. 2006. Arsenic(V) removal from groundwater using nano scale zerovalent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40: 2045-2050.
  • [346] Kanel S.R., Manning B., Charlet L., Choi H. 2005. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol.39: 1291-1298.
  • [347] Konstantina T., Elpida P., Nikolaos P.N. 2007. Modeling of arsenic immobilization by zero valent iron. Eur. J. Soil Biol. 43: 356-367.
  • [348] Ramos M.AV., Yan W., Li X.-G., Koel B.E., Zhang W.X. 2009. Simultaneous oxidation and reduction of arsenic by zero-valentiron nanoparticles: Understanding the significance of the core-shell structure. J. Phys. Chem. C 113 (33): 14591-14594.
  • [349] Ling L., Zhang W-X. 2014. Sequestration of arsenate in zero-valent iron nanoparticles: Visualisation of intrparticle reactions at anyrom resolutions. Environ. Sci. Technol. 3 (12): 305-309.
  • [350] Olegario J.T., Yee N., Miller M., Szczepaniak J., Manning B. 2010. Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. J. Nanopart. Res. 12, 2057-2068.
  • [351] Cao J., Elliott D., Zhang W.-X. 2005. Perchlorate reduction by nanoscale iron particles. J. Nanoparticle Res.7 (4-5): 499-506.
  • [352] Hsu J., Liao C., Wei Y. 2011. Nitrate removal by synthetic nanoscale zero-valent iron in aqueous recirculated reactor. Sustain. Environ. Res. 21: 353-359.
  • [353] Jiang Z., Lv L., Zhang W., Du Q., Pan B., Yang L., Zhang Q. 2011. Nitrate reduction using nanosized zerovalent iron supported by polystyrene resins: Role of surface functional groups. Water Res. 45: 2191-2198.
  • [354] Kassaee M.Z., Motamedi E., Mikhak A., Rahnemaie R. 2011. Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chem. Eng. J. 166: 490-495.
  • [355] Liou Y.H., Lo S., Kuan W.H., Lin C., Weng S.C. 2006. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res. 40: 2485-2492.
  • [356] Martel R., Robertson T.J., Quan D.M. 2008. 2,4,6-Trinitrotoluene in soil and ground water under a waste lagoon at the former Explosives Factory Maribyrnong (EFM), Victoria, Australia. Environ. Geology 53(6): 1249-1259.
  • [357] Choe S., Chang Y.Y., Hwang K.Y., Khim J. 2000. Kinetics of reductive denitrification by nanoscale zero valent iron. Chemosphere 41: 1307-1311.
  • [358] Almeelbi T., Bezbaruah A. 2012. Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart. Res. 14: 3-14.
  • [359] Alfred B.J., Racharaks R. 2014. Laboratory comparison of four iron-based filter materials for drainage waterphosphate treatment. Water Environ. Res. 86: 852-862.
  • [360] Albright R.D. 2012. Death of the Chesapeake: A History of the Military’s Role in Polluting the Bay. Scrivener Publishing, J. Willey.
  • [361] Phillips C.T., Checkai R.T., Wentsel R.S. 1993. Toxicity of Selected Munitions and Munition contaminated Soil on the Earthworm (Eisenia foetida). Report ERDEC-TR-037, Edgeworth Research Development and Engineering Center, U.S. Army. Chemical and Biological Defence Agency, Aberdeen Proving Ground, MD.
  • [362] ATSDR. Toxicological Profile for 2,4,6-Trinitrotoluene. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 1995.
  • [363] Xue S.K. Iskandar I.K., Selim H.M. 1995. Adsorptiondesorption of 2,4,6-trinitrotoluene and hexahydro-1,3,5trinitro-1,3,5-triazine in soils. Soil Sci. 160 (5): 317-327.
  • [364] Butler E.C., Hayes K.F. 1998. Effects of Solution Composition and pH on the Reductive Dechlorination of Hexachloroethane by Iron Sulfide. Environ. Sci. Technol. 32: 1276-1284.
  • [365] Zoch K.D., Stennstrom M.K. 2002. Fenton oxidation of heksahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5-tetranitro-tetrazocime (HMX). Water Res. 36 : 1331-1341.
  • [366] Brannon M., Myers T.E. 1997. Review of fate and transport processes of explosives. Technical Report IRRP-97-2. U.S. Army Corps of Engineers, March 1997.
  • [367] ATSDR. To SDR. Toxicological Profile for HMX. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 1997.
  • [368] Harley S.D., Fellows R.J., Campbell J.A., Cataldo D.A. 1991. Determination of the explosive 2,4,6-trinitrophenylmethylnitrate and transformation products in soil. J. Chromatography 605: 227-240.
  • [369] Coleman N.V., Spain J.C., Duxbury T. 2002. Evidence that RDX biodegradation by Rhadococcus DN 22, is plasmid borne and involves a cytochrome P-450. J. Appl. Microbiol. 98: 463-472.
  • [370] Bandstra J.Z., Miehr R., Johnson R.L. Tratnyek P.G. 2005. Reduction of 2,4,6-trinitrotoluene by iron metal kinetic controls on product distributions in batch experiments. Environ. Sci. Technol. 39 (1):230-238.
  • [371] NFESC. Development of Marine Sediment Toxicity for Ordnance Compounds and Toxicity Identification Evaluation Studies at Selected Naval Facilities, Report Number CR 01-002-ENV, Naval Facilities Engin. Comm., 2000.
  • [372] Kim J.S., Shea P.J., Yang J.E., Kim J.E. 2007. Halide salts accelerate degradation of high explosives by zero-valent iron. Environ. Pollut. 147: 634-641.
  • [373] MacDonald J.A., Small M.J., Morgan M.G. 2009. Quantifying the risks of unexploded ordnance at closed military bases. Environ. Sci. Technol. 43 (2): 259-265.
  • [374] Douglas T.A, Walsh M.E., McGrath C.J., Weiss C.A., Jaramillo A.M., Trainor T.P. 2010. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions. Environ. Toxicol. Chem. 30 (2): 345-353.
  • [375] Kalderis D., Juchasz A.L. Boopathy R., Comfort S. 2001. Soils contained with explosives: Environmental fate and evaluation on state of the art remediation in processes. IUPAC Technical Report 83(7).
  • [376] McDowall L. 2005. Degradation of Toxic Chemicals by Zero-Valent Metal Nanoparticles – A Literature Review. Australian Government Department of Defense; Defense Science and Technology Organization.
  • [377] Islam M.N., Shin M.S., Jo Y-T., Park H-J. 2015. TNT and RDX degradation and extraction from contaminated soil using subcritical water. Chemosphere 119: 1448-1152.
  • [378] Saad R., Thiboutot S., Ampleman G., Dashan W., Hawari J. 2010. Degradation of trinitroglycerin (TNG) using zero-valent iron nanoparticles/nanosilica SBA-15 composite (ZVINs/SBA-15). Chemosphere 81:853-858.
  • [379] Hundal L.S., Singh J., Bier E.L., Shea P.J., Compart S.D., Powers W.L. 1997. Removal TNT and RDX from water and soil using iron metal. Environ. Pollut. 97 (1-2): 55-64.
  • [380] Glover D.J., Hoffsommer J.C. 1979. Photolysis of RDX: Identification and Reaction Products. Technical Report NSWCTR-79-349, Naval Surface Weapons Center, Silver Spring, MD.
  • [381] Lavine B.K., Auslander G., Ritter J. 2001. Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment. Microchem. J. 70: 69-83.
  • [382] Ryon M.G. 1987. Water Quality Criteria for 2,4,6-Trinitrotoluene (TNT). Oak Ridge National Laboratory, AD ORNL 6304.
  • [383] ATSDR. Toxicological Profile for 2,4,6-Trinitrotoluene. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 1995.
  • [384] Simin M., Chechai R.T., Kolakowski J.E., Kuperman R.G., Phillips C.T., Kurnas C.W. 2006. Ecological soil screening levels for plants exposed to TNT: Supporting range sustainability for training and testing. In: Proc. of the 25th Army Science Conf. Transformational Army Science and Technology: Charting the future of S&T for the Soldier. Orlando, Florida, 27-30 November 2006.
  • [385] Douglas T.A., Walsh M.E., McGrath C.J., Weiss C.A. 2009. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils. J. Environ. Quality 38 (6):2285-2294.
  • [386] Zhang M., Loiu G., Song K., Wang Z., Zhao Q., Li Z., Ye Z. 2015. Biological treatment of 2,4,6-trinitrotoluene (TNT) red water by immobilized anaerobic microbial filters. Chem. Eng. J. 259, 876-884.
  • [387] Ullah H., Shah A.A., Hasan F., Hameed A. 2010. Biodegradation of trinitrotoluene by immobilized Bacillus Sp. Yre1. Pak. J. Bot. 42 (5): 3357-3367.
  • [388] Uchimiya M. 2010. Reductive transformation of 2,4-dinitrotoluene: roles of iron and natural organic matter. Aquatic Geochemistry 16: 547-562.
  • [389] Pichtel J. 2012. Distribution and fate of military explosives and propellants on soil: A review. Appl. Environ. Soil Sci. 2012: 1-33.
  • [390] Islam M.N., Shin M.S., Jo Y-T., Park H.-J. 2015. TNT and RDX degradation and extraction from contaminated soil using subcritical water. Chemosphere 119: 1448-1152.
  • [391] Walsh M.R., Walsh M.E., Hewitt A.D., Collins C.M. 2008. Field-expedient disposal of excess artillery propellants. In: Proc. of the SERDP&ESTCP’s Partners in Environ. Technol. Tech. Symp. and Workshop. December 2008, Washington, DC, USA.
  • [392] Kim J.B., Cha D.K., Chiu P.C., Oh S.-Y. 2012. Degradation of energetic compounds using zerovalent iron (ZVI). Final Report ESTCP Project WP-200524, Department of Civil and Environmental Engineering, University of Delaware.
  • [393] Urbansky E.T. 1998. Perchlorate chemistry: implications for analysis and remediation. Bioremediation 2: 81-95.
  • [394] Gullick R.Q., Lechvallier M.W., Barhorst T.A.S. 2001. Occurrence of perchlorate in drinking water sources. J. Amer. Water Works Assoc. 93: (1): 66-77.
  • [395] Logan B.E. 2001. Assessing the outlook for perchlorate remediation. Environ. Sci. Technol. 35:482A-487A.
  • [396] Motzer W.E. 2001. Perchlorate: problems, detection, and solutions. Environ. Forensics 2: 301-311.
  • [397] Trumpolt C.W., Crain M., Cullison C.D. Flanagan S.J, Siegel P.L., Lathrop S. 2005. Perchlorate: sources, uses, and occurrences in the environment. Remediation 16 (1): 65-89.
  • [398] Gębka K., Bełdowski J., Bełdowska M. 2016. The impact of military activities on the concentration of mercury in soils of sitting training grounds and marine sediments. Environ. Sci. Pollut. Res. 23 (22):23103-23111.
  • [399] Xu J., Song Y., Min B., Steinberg L., Logan B.E. 2003. Microbial degradation of perchlorate: principles and applications. Environ. Eng. Sci. 20 (5): 405-422.
  • [400] Bordeleau G., Martel R., Ampleman G., Thiboutot S. 2008. Environmental impacts of training activities at an air weapons range. J. Environ. Quality 37 (2): 308-317.
  • [401] Naftz D.L., Morrison S.J., Davis J.A., Fuller C.C. 2002. Introduction to Groundwater Remediation of Metals, Radionuclides and Nutrients with Permeable Reactive Barriers. In: Handbook of Groundwater Remediation Using Permeable Reactive Barriers: Applications to Radionuclides, Trace Metals, and Nutrients. (Naftz D.A., Morrison S.J., Davis J.A., Fuller C.C., Eds.) Academic Press, Chapter 1.
  • [402] Naftz D.L., Fuller C.C., Davis J.A., Morrison S.J., Rowland R.C., Feltcorn E.M. 2002. Field demonstration of three permeable reactive barriers to control uranium contamination in ground water, Fry Canyon, Utah. In: Handbook of Groundwater Remediation Using Permeable Reactive Barriers: Applications to Radionuclides, Trace Metals, and Nutrients. (Naftz D.A., Morrison S.J., Davis J.A., Fuller C.C., Eds.) Academic Press, Chapter 14, pp. 401-434.
  • [403] Morrison S.J., Mushovic P.S., Niesen P.L. 2006. Early breakthrough of molybdenum and uranium in a permeable reactive barrier. Environ. Sci. Technol. 40: 2018-2024.
  • [404] Cundy A.B., Hopkinson L., Whitby R.L.D. 2008. Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci. Total Environ. 400: 42-51.
  • [405] Klimkova S., Cernik M., Lacinova L., Filip J., Jancik D., Zboril R. 2011. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82: 1178-1184.
  • [406] Crane R.A., Dickinson M., Popescu I.C., Scott T.B. 2011. Magnetite and zero- valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res. 45 (9): 2931-2942.
  • [407] Liger E., Charlet L., van Cappellen P. 1999. Surface catalysis of uranium(VI) reduction by iron(II). Geochim. Cosmochim. Acta 63: 2939-2955.
  • [408] Yi Z.J., Xu J.S., Chen M.S., Li W., Yao J., Chen H.L., Wang F. 2013. Removal of uranium(VI) from aqueous solution using sponge iron. J. Radioanal Nucl. Chem. 298: 955-961.
  • [409] Ding C.C., Cheng W.C. Sun B., Wang X.K. 2015. Effects of Bacillus subtilis on the reduction of U(VI) by nanoFe(0). Geochim. Cosmochim. Acta 165: 86-107.
  • [410] Chen A., Shang C., Shao J., Zhang J., Huang H. 2017. The application of iron-based technologies in uranium remediation: a review. Sci. Total. Environ. 575: 1291-1306.
  • [411] Sunilkumar B, Chkrapani G. 2014, Studies on sorption of uranium on chitin: a solid-state extractant application for removal of uraniumm from ground water. J. Radioanal. Nucl Chem. 302 (3): 1489-1493.
  • [412] Noubactep C., Schoner A., Meinrath G. 2006. Mechanism of uranium (VI) fixation by elemental iron. J. Hazard. Mater. 132: 202-212.
  • [413] O’Hara S., Krug T., Quinn J., Clausen C., Geiger C. 2006. Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation 16: 35-56.
  • [414] Elliott D.W., Zhang W. 2001. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 35: 4922-4926.
  • [415] Wachowski L., Domka L. 2000. Sources and effects of asbestos and other mineral fibres presence in ambient air. Polish J. Environ. Stud. 9 (6): 443-454.
  • [416] Wachowski L., Kirszensztejn P. 2002. Postępowanie z substancjami i odpadami zawierającymi PCB. W: Odpady i opakowania – nowe regulacje prawne i obowiązki. (Urbaniak Wł., red.) Poznań : Wyd. Forum Sp. z o.o., rozdz. 7/2.6, 1-13.
  • [417] Wachowski L., Kirszensztejn P. 2001. A review of the methods for conversion waste-containing halogen compounds. Polish J. Environ. Stud. 11, Supl. 1 (6): 13-26.
  • [418] Foltynowicz Z., Wachowski L. 2009. Towaroznawcze i ekologiczne aspekty wprowadzania zamienników freonów i halonów. Poznań : Wyd. Uniwersytetu Ekonomicznego w Poznaniu.
  • [419] Wachowski L., Kirszensztejn P. 1996. The environment impact freons and halons. Ed. Adv. Chem. 3: 143-166.
  • [420] Němeček J., Lhotský O., Cajthaml T. 2014. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Sci Total Environ. 485-486: 739-747.
  • [421] Reijnders L. 2006. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J. Clean Prod. 14, 124-133.
  • [422] Auffan M., Achouak W., Rose J., Roncato M.A., Chanéac C., Waite D.T., Masion A., Woicik J.C., Wiesner M.R., Botero J.Y. 2008. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 42 (17): 6730-6735.
  • [423] Wiesner M.R., Lowry G.V., Alvarez P., Dionysiou D., Biswas P. 2006. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40: 4336-4345.
  • [424] Chen P.J., Wu W.L., Wu K.C. 2013. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Res. 47 (12): 899-3909.
  • [425] Keller A.A., Garner K., Miller R.J., Lenihan H.S. 2012. Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One 7 (8): e43983.
  • [426] Kadar E., Rooks P., Lakey C., White D.A. 2012. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci. Total Environ. 439: 8-17.
  • [427] El-Temsah Y.S. Joner E.J. 2012. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent, iron (nZVI) in soil. Chemosphere 89 (1): 76-82.
  • [428] Saccà M.L., Fajardo C., Martinez-Gomariz M., Costa G., Nande M., Martin M. 2014. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS One 9 (2): e2014022.
  • [429] Saccà M.L., Fajardo C., Costa G., Lobo C., Nande M., Martin M. 2014. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere 104: 184-189.
  • [430] Snousy M.G., Zawrah M. 2017. Nanoparticles restrictions in environmental cleanup attachment to soil surface models. Environ. Sci. Technol. 43: 3803-3808.
  • [431] Ma X., Gurung A., Deng Y. 2013. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci. Total Environ. 443: 844-849.
  • [432] Park K. 2005. Toxicity of nanomaterials and strategy of risk assessment. J. Environ. Toxicol. 20 (4): 259-271.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f484a14-13a7-473e-ad93-ed77fcc2dafa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.