PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ anestetyków wziewnych na modelową błonę biologiczną

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Influence of inhalation anesthetics on a model biological membrane
Języki publikacji
PL
Abstrakty
EN
General anesthesia is defined as impairment of the central nervous system (UON) caused by intravenous or volatile anesthetics. The state of loss of consciousness or even amnesia and the disappearance of perception into external stimuli is achieved by the use of a large group of chemical compounds. The use of nitrous oxide in 1844 revolutionized surgery and medicine at that time. From that moment, anesthesiology develops dynamically, allowing more and more complex procedures. Despite more than 170 years of history of anesthesia, understanding the mechanism of reversible loss of awareness and sensitivity to pain caused by the action of general anesthetics is one of the greatest challenges of modern pharmacology and neuroscience. Incredibly high diversity of anesthetics, including both noble gases and complex steroids, combined with human sensation makes the above problem extremely difficult to solve. The reversibility of the anesthesia phenomenon suggests that the analyzed phenomenon is based on disturbance of weak intermolecular interactions, such as hydrogen bond or van der Walls forces. Anesthetic molecules may bind directly to the hydrophobic region of protein, which causes its conformational changes or disturb ion channel activity by anesthetic-induced perturbations of lipid bilayers. The mechanism of anesthesia is thus very often attributed to both protein and lipid membrane targets. The influence of anesthetic molecules on biomolecular systems can be studied successfully using many different physico-chemical methods, such as, infrared, fluorescence or nuclear magnetic resonance spectroscopy. Vibrational circular dichroism as well as differential scanning calorimetry can also be used.
Rocznik
Strony
263--285
Opis fizyczny
Bibliogr. 110 poz., rys., schem., tab., wykr.
Twórcy
  • Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław
  • Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław
  • Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] R. Larsen, Anestezjologia, Tom I, Elsevier Urban & Partner, Wrocław 2013.
  • [2] P.G. Barash, B.F. Cullen, R.K. Stoelting, M.K. Cahalan, M.C. Stock, R. Ortega, Clinical anesthesia, Lippincott Williams & Wilkins, USA 2009.
  • [3] I.I. Eger, I. Edmond, L.J. Saidman, R.N. Westhorpe, The wondrous story of anesthesia, Springer New York 2014.
  • [4] R.D. Miller, M. Pardo, Basics for anesthesia, Elsevier Health Sciences, USA 2011.
  • [5] O.C. Wenker, Int. J. Anesthesiol., 1999, 3, 1.
  • [6] F.X. Whalen, D.R. Bacon, H.M. Smith, Best Pract. Res. Clin. Anaesthesiol., 2005, 19, 323.
  • [7] H.C. Hemmings, T.D. Egan, Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application, Elsevier Health Sciences, USA 2012.
  • [8] G. Torri, Minerva Anestesiol., 2010, 76, 215.
  • [9] I.I. Eger, I. Edmond, Am. J. Health Syst. Pharm., 2004, 61.
  • [10] T.L. Lemke, D.A. Williams, Foye's Principles Medicinal Chemistry, Lippincott Williams & Wilkins, USA 2008.
  • [11] E.I. Eger, Semin. Anesth, Perioperative Medicine and Pain, 2005, 24(2), 89
  • [12] S. Mitra, P. Chopra, Indian J. Anaesth, 2011, 55(6), 556
  • [13] R. Liu, R.G. Eckenhoff, Anesthesiol., 2005, 102(4), 799.
  • [14] G.A. Mashour, S.A. Forman, J.A. Campagna, Best Pract. Res. Clin. Anaesthesiol., 2005, 19(3), 349.
  • [15] J.A. Campagna, K.W. Miller, S.A. Forman, N. Engl. J. Med., 2003, 348(21), 2110.
  • [16] C.D. Richards,. J. Anaesth., 2002, 89, 79.
  • [17] U. Rudolph, B. Antkowiak, Nat. Rev. Neurosci., 2004, 5, 709.
  • [18] N. Franks, W. Lieb, Toxicol. Lett., 1998, 100-101, 1.
  • [19] A.D. Kaye, A.M. Kaye, R.D. Urman, Essentials of pharmacology for anesthesia, pain medicine, and critical care, Springer New York, USA 2015.
  • [20] H. Meyer, Arch. Exp. Path. Pharmakol. (Naunyn Schmiedebergs), 1899, 42, 109.
  • [21] S. Taheri, M.J. Halsey, J. Liu, E.I. Eger, D.D. Koblin, M.J. Laster, Anesth. Analg., 1991, 72, 627.
  • [22] N.P. Franks, W.R. Lieb, Nature, 1981, 292, 248.
  • [23] R.S. Cantor, Biochemistry, 1997, 36(9), 2339.
  • [24] H. Tsuchiya, M. Mizogami, Anesthesiol. Res. Pract., 2013, 2013, 1.
  • [25] S. Vemparala, L. Saiz, R.G. Eckenhoff, M.L. Klein, Biophys. J., 2006, 91(8), 2815.
  • [26] K.W. Miller, W.D. Paton, R.A. Smith, E.B. Smith., Mol. Pharmacol., 1973, 9(2), 131.
  • [27] J.T. Mohr, G.W. Gribble, S.S. Lin, R.G. Eckenhoff, R.S. Cantor, J. Med. Chem., 2005, 48(12), 4172.
  • [28] R.A. Lerner, Proc. Natl. Acad. Sci. USA, 1997, 94(25), 13375.
  • [29] R.G. Eckenhoff, Mol. Interv., 2001, 1, 258.
  • [30] D.D. Koblin, B.S. Chortkoff, M.J. Laster, E.I. Eger, M.J. Halsey, P. Ionescu, Prog. Anesth. Mech., 1995, 3, 451.
  • [31] E. J. Bertaccini, Pharmaceuticals, 2010, 3(7), 2178.
  • [32] N.P. Franks, W.R. Lieb, Nature, 1984, 310, 599.
  • [33] N.P. Franks, W.R. Lieb, Nature, 1994, 367, 607.
  • [34] H.C. Hemmings, M.H. Akabas, P.A. Goldstein, J.R. Trudell, B.A. Orser, N.L. Harrison, Trends. Pharmacol. Sci., 2005, 26(10), 503.
  • [35] C. J. Weir, Critical Care & Pain, 2006, 6(2), 49.
  • [36] P. Arhem, G. Klement, J. Nilsson, Neuropsychopharmacol., 2003, 28(S1), 40.
  • [37] R.K. Murray, Harper’s illustrated biochemistry, McGraw Hill Professional, USA 2015.
  • [38] R.H. Garrett, C.M. Grisham, Biochemistry, Cengage Learning, USA 2016.
  • [39] W. Stillwell, An Introduction to Biological Membranes: From Bilayers to Rafts, Newnes, USA 2013.
  • [40] G. van Meer, D.R. Voelker, G.W. Feigenson, Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112.
  • [41] G. Pabst, N. Kučerka, M. Nieh, J. Katsaras, Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application, CRC Press, USA 2014.
  • [42] P.V. Escribá, G.L. Nicolson, Biochim. Biophys. Acta, 2014, 1838(6), 1449.
  • [43] P.V. Escribá, J.M. Gonzalez-Ros, F.M. Goni, P.K.J. Kinnunen, L. Vigh, L. Sanchez-Magraner, A.M. Fernandez, X. Busquets, I. Horvath, G. Barcelo-Coblijn, J. Cell. Mol. Med., 2008, 12(3), 829.
  • [44] P.V. Escribá, P.B. Wedegaertner, F.M. Goni, O. Vögler, Biochim. Biophys. Acta, 2007, 1768(4), 836.
  • [45] https://www.khanacademy.org/science/biology [Data odczytu: 24.08.2017 11:47].
  • [46] M. Panasewicz-Gierula, KOSMOS, 2009, 58, 49.
  • [47] J.W. Baynes, M.H. Dominiczak, Medical Biochemistry E-Book, Elsevier Health Sciences, USA 2014
  • [48] K. Dołowy, A. Szewczyk, S. Pikuła, Błony biologiczne, Śląsk, Katowice 2003.
  • [49] D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, W.H. Freeman, USA 2012.
  • [50] G. Milano, T. Kawakatsu, A. De Nicola, Phys. Biol., 2013, 10(4), 1.
  • [51] P.L Yeagle, The Structure of Biological Membranes, CRC Press, USA 2011.
  • [52] S. Przestalski, J. Sarapuk, H. Kleszczyńska, J. Gabrielska, J. Hładyszewski, Z. Trela, J. Kuczera, Acta Biochim. Polonica, 2000, 47, 627.
  • [53] R.N. Lewis, D.A. Mannock, R.N. McElhaney, Curr. Top. Membr., 1997, 44, 25.
  • [54] R. Lewis, R.N. McElhaney, Biochim. Biophys. Acta, 2013, 1828(10), 2347.
  • [55] M.O. Eze, Biochem. Educ., 1991, 19(4), 204.
  • [56] F.M. Harris, K.B. Best, J.D. Bell, Biochim. Biophys. Acta, 2002, 1565, 123.
  • [57] R. Koynova, M. Caffrey, Biochim. Biophys. Acta, 1998, 1376, 91.
  • [58] S.C. Chen, J.M. Sturtevant, B.J. Gaffney, Proc. Natl. Acad. Sci. U. S. A., 1980, 77(9), 5060.
  • [59] M.J. Ruocco, G.G. Shipley, Biochim. Biophys. Acta, 1982, 691(2), 309.
  • [60] K.A. Riske, R.P. Barroso, C.C. Vequi-Suplicy, R. Germano, V.B. Henriques, M.T. Lamy, Biochim. Biophys. Acta, 2009, 1788, 954.
  • [61] M.P. Hentschel, F. Rustichelli, Phys. Rev. Lett., 1991, 66, 903.
  • [62] C. Leidy, K. Gousset, J. Ricker, W.F. Wolkers, N.M. Tsvetkova, F. Tablin, J.H. Crowe, Cell Biochem. Biophys., 2004, 40(2), 123.
  • [63] A. Gawron, A. Gabizon, Y. Barenholz, Biochim. Biophys. Acta, 1990, 1029, 285.
  • [64] O.G. Mouritsen, K. Jorgensen, Pharm. Res., 1998, 15(10), 1507.
  • [65] O. Cramariuc, T. Rog, I. Vattulainen, Curr. Phys. Chem., 2012, 2, 379.
  • [66] I. Ueda, M. Hirakawa, K. Arakawa, H. Kamaya, Anesthesiology, 1986, 64, 67.
  • [67] T. Mori, N. Matubayasi, I. Ueda, Mol. Pharmacol., 1984, 25, 123.
  • [68] S.V. Balasubramanian, R.B. Campbell, R.M. Straubinger, Chem. Phys. Lipids, 2002, 114, 35.
  • [69] T. Andoh, T.J.J. Blanck, I. Nikonorov, E. Recio-Pinto, Br. J. Anaesth., 1997, 78, 66.
  • [70] H. Tsuchiya, Clin. Exp. Pharmacol. Physiol., 2001, 28, 292.
  • [71] C. Demetzos, J. Liposome Res., 2008, 18, 159.
  • [72] M. Engelke, R. Jessel, A. Wiechmann, H.A. Diehl, Biophys. Chem., 1997, 67, 127.
  • [73] Z.V. Leonenko, D.T. Cramb, Can. J. Chem., 2004, 82(7), 1128.
  • [74] The structure of biological membranes, P.L. Yeagle (Red.), Wyd. 2, CRC Press, USA 2005.
  • [75] J.L. Slater, C.H. Huang, Prog. Lipid Res., 1998, 27, 325.
  • [76] J. Zeng, P. Lee-Gau Chong, Biophys. J. 1995, 68, 567.
  • [77] A.A. Elkordy, Applications of Calorimetry in a Wide Context – Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry, InTech, USA, 2013.
  • [78] T.J. McIntosh, R.V. McDaniel, S.A. Simon, Biochim. Biophys. Acta, 1983, 731, 109.
  • [79] U. Vierl, L. LÖbbecke, N. Nagel, G. Cevc, Biophys. J., 1994, 67,1067.
  • [80] L. LÖbbecke, G. Cevc, Biochim. Biophys. Acta, 1995, 1237, 59.
  • [81] M. Kranenburg, M. Vlaar, B. Smit, Biophys. J., 2004, 87, 1596.
  • [82] E.S. Rowe, Biochem., 1983, 22, 3299.
  • [83] M.F.N. Rosser, H.M. Lu, P. Dea, Biophys. Chem., 1999, 81, 33.
  • [84] E. Terama, O.S. Ollila, E. Salonen, A.C. Rowat, C. Trandum, P. Westh, I. Vattulainen, J. Phys. Chem., 2008, 112(13), 4131.
  • [85] M.S.P. Sansom, P.C. Biggin, Molecular simulations and biomembranes: from biophysics to function, Royal Society of Chemistry, 2010.
  • [86] R.S. Cantor, Biophys. J., 2001, 80(5), 2284.
  • [87] N. Franks, W. Lieb, Anesthesiol., 2004, 101, 235.
  • [88] N. Franks, Nat. Rev. Neurosci., 2008, 9(5), 370.
  • [89] M. Chebib, G.A. Johnston, Clin. Exp. Pharmacol. Physiol., 1999, 26(11), 937.
  • [90] P.S. Garcia, S.E. Kolesky, A. Jenkins, Curr. Neuropharmacol., 2010, 8(1), 2.
  • [91] R. Sogaard, T.M. Werge, C. Bertelsen, C. Lundbye, K.L. Madsen, C.H. Nielsen, J.A. Lundbak, Biochem., 2006, 45(43), 13118.
  • [92] A.G. Lee, Biochim. Biophys. Acta, 2004, 1666(1), 62.
  • [93] T.C. Jacob, S.J. Moss, R. Jurd, Nat. Rev. Neurosci., 2008, 9(5), 331.
  • [94] P.S. Miller, A.R. Aricescu, Nature, 2014, 512(7514) 270.
  • [95] R. Puthenkalam, Front. Mol. Neurosci., 2016, 9.
  • [96] R.G. Eckenhoff, J.W. Tanner, Biophys. J., 1998, 75(1), 477.
  • [97] A.A. Battacharya, S. Curry, N.P. Franks, J. Biol. Chem. 2000, 275(49), 38731.
  • [98] N.P. Franks, Biophys. J., 1998, 75(5), 2205.
  • [99] P. Tang, J. Hu, S. Liachenko, Y. Xu, Biophys. J., 1999, 77(2), 739.
  • [100] P. Tang, V. Simplaceanu, Y. Xu, Biophys. J., 1999, 76(5), 2346.
  • [101] P. Tang, R.G. Eckenhoff, Y. Xu, Biophys. J., 2000, 78(4), 1804.
  • [102] B.A. Wallace, Annu. Rev. Biophys. Biophys. Chem., 1990, 19, 127.
  • [103] R.J. Dubos, C. Cattaneo, J. Exp. Med., 1939, 70, 249.
  • [104] D.A. Kelkar, A. Chattopadhyay, Biochim. Biophys. Acta, 2007, 1768(9), 2011.
  • [105] T.G. Meikle, C.E. Conn, F. Separovic, C.J. Drummond, RSC Adv., 2016, 6(73), 68685.
  • [106] B.A. Wallace, J. Struct. Biol., 1998, 121(2), 123.
  • [107] J.A. Killian, K.U. Prasad, D. Hains, D.W. Urry, Biochemistry, 1988, 27, 4848.
  • [108] P.V. LoGrasso, F. Moll, T.A. Cross, Biophys. J., 1988, 54, 259.
  • [109] B.W. Urban, M. Bleckwenn, M. Barann, Pharmacol. Ther., 2006, 111(3), 729.
  • [110] P. Tang, I.Z. Zubrzycki, Anesthesiol., 2000, 93, 145.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f407a1c-4df8-41b5-9963-1b1772afe1d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.