PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the material's sensitivity to non-proportionality of fatigue loading

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many researches have shown that fatigue behaviour of a number of materials is significantly different in non-proportional loading conditions when compared to proportional ones. These differences concern stress–strain characteristics, fracture, the phenomena taking place in the material, and finally fatigue life. The aim of this study is to provide a survey on basic experimental results and methods of taking into account a material's sensitivity to non-proportionality of loading in multiaxial fatigue life estimation models for metals.
Rocznik
Strony
711--727
Opis fizyczny
Bibliogr. 61 poz., tab., wykr.
Twórcy
  • UTP University of Science and Technology in Bydgoszcz, Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] V. Anes, L. Reis, B. Li, M. de Freitas, New approach to evaluate non-proportionality in multiaxial loading conditions, Fatigue and Fracture of Engineering Materials and Structures 37 (2014) 1338–1354. , http://dx.doi.org/10.1111/ffe.12192.
  • [2] M. Noban, H. Jahed, E. Ibrahim, A. Ince, Load path sensitivity and fatigue life estimation of 30CrNiMo8HH, International Journal of Fatigue 37 (2012) 123–133. , http://dx.doi.org/ 10.1016/j.ijfatigue.2011.10.009.
  • [3] B.C. Li, C. Jiang, X. Han, Y. Li, A new approach of fatigue life prediction for metallic materials under multiaxial loading, International Journal of Fatigue 78 (2015) 1–10. , http://dx.doi. org/10.1016/j.ijfatigue.2015.02.022.
  • [4] D. Socie, G. Marquis, Multiaxial Fatigue, Society of Automotive Engineers, 2000 http://books.google.pl/books? id=1upjQgAACAAJ.
  • [5] L. Susmel, R. Tovo, Estimating fatigue damage under variable amplitude multiaxial fatigue loading, Fatigue and Fracture of Engineering Materials and Structures 34 (2011) 1053–1077. , http://dx.doi.org/10.1111/j.1460-2695.2011.01594.x.
  • [6] M.R. Bees, S.J. Pattison, N. Fox, M.T. Whittaker, Non-proportional behaviour of a nickel-based superalloy & characterisation of the additional hardening response by a modified cyclic hardening curve non-proportional behaviour of a nickel-based superalloy & characterisation of the additional hardening res, in: 10th Int. Conf. Multiaxial Fatigue Fract, Kyoto, 2013.
  • [7] M.A. Meggiolaro, J.T.P. de Castro, An improved multiaxial rainflow algorithm for non-proportional stress or strain histories – Part I: Enclosing surface methods, International Journal of Fatigue 42 (2012) 217–226. , http://dx.doi.org/ 10.1016/j.ijfatigue.2011.10.014.
  • [8] Ł. Pejkowski, D. Skibicki, J. Sempruch, High cycle fatigue behavior of austenitic steel and pure copper under uniaxial, proportional and non-proportional loading, Strojniski Vestnik – Journal of Mechanical Engineering 60 (2014) 549– 560. , http://dx.doi.org/10.5545/sv-jme.2013.1600.
  • [9] K. Kanazawa, K.J. Miller, M.W. Brown, Cyclic deformation of 1% Cr–Mo–V steel under out-of-phase loads, Fatigue of Engineering Materials and Structures 2 (1979) 217–222.
  • [10] D. Skibicki, Phenomena and Computational Models of Non- Proportional Fatigue of Materials, Springer, 2014.
  • [11] N. Shamsaei, A. Fatemi, D.F. Socie, Multiaxial cyclic deformation and non-proportional hardening employing discriminating load paths, International Journal of Plasticity 26 (2010) 1680–1701. , http://dx.doi.org/10.1016/j. ijplas.2010.02.006.
  • [12] N. Shamsaei, A. Fatemi, Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions, Materials Science and Engineering Part A 527 (2010) 3015–3024. , http://dx.doi.org/10.1016/j.msea.2010.01. 056.
  • [13] M. Noban, H. Jahed, S. Winkler, A. Ince, Fatigue characterization and modeling of 30CrNiMo8HH under multiaxial loading, Materials Science and Engineering Part A 528 (2011) 2484–2494. , http://dx.doi.org/10.1016/j.msea. 2010.11.075.
  • [14] Z.-R.R. Wu, X.-T.T. Hu, Y.-D.D. Song, Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading, International Journal of Fatigue 59 (2014) 170–175. , http://dx.doi.org/10.1016/j.ijfatigue.2013.08. 028.
  • [15] N. Shamsaei, A. Fatemi, D.F. Socie, Multiaxial fatigue evaluation using discriminating strain paths, International Journal of Fatigue 33 (2011) 597–609. , http://dx.doi.org/ 10.1016/j.ijfatigue.2010.11.002.
  • [16] T. Nishihara, M. Kawamoto, The strength of metals under combined alternating bending and torsion, Transactions of the Japan Society of Mechanical Engineers 12 (1945) 44–53.
  • [17] H. Zenner, I. Richter, Eine Festigkeitshypothese für die Dauerfestigkeit bei beliebigen Beanspruchungskombinationen, Konstruktion 29 (1977) 11–18.
  • [18] H. Zenner, R. Heidenreich, I. Richter, Dauerschwingfestigkeit bei nichtsynchroner mehrachsiger Beanspruchung, Materwiss. Werksttech. (1985) 101–112.
  • [19] R. Heidenreich, H. Zenner, I. Richter, Dauerschwingfestigkeit bei mehrachsiger Beanspruchung, Forschungshefte FKM H. 105 (1983).
  • [20] T. Matake, An explanation on fatigue limit under combined stress, Bulletin of Japan Society of Mechanical Engineers 20 (1977) 257–263.
  • [21] H.J. Gough, W.J. Clenshaw, H.V. Pollard, Some experiments on the resistance of metals to fatigue under combined stresses, in: Minist. Supply, Aeronaut. Res. Counc. Reports Memo. London His Majesty's Station. Off., 1951, 141+XII pp.
  • [22] F. Rotvel, Biaxial fatigue tests with zero mean stresses using tubular specimens, International Journal of Mechanical Sciences 12 (1970) 597–613. , http://dx.doi.org/10.1016/0020- 7403(70)90091-3.
  • [23] W. Lempp, Festigkeitsverhalten von Stählen bei mehrachsiger Dauerschwingbeanspruchung durch Normalspannungen mitüberlagerten phasengleichen und phasenverschobenen Schubspannungen, University of Stuttgart, 1977.
  • [24] J. Zhang, X. Shi, B. Fei, High cycle fatigue and fracture mode analysis of 2A12–T4 aluminum alloy under out-of-phase axial–torsion constant amplitude loading, International Journal of Fatigue 38 (2012) 144–154. , http://dx.doi.org/ 10.1016/j.ijfatigue.2011.12.017.
  • [25] L. Dubar, Fatigue multiaxiale des aciers–passage de l'endurance ál'endurance limitée–prise en compte des accidents géométriques, Ecole Nationale Supérieure d'Arts et Métiers, 1992.
  • [26] N. Huyen, L. Flaceliere, F. Morel, A critical plane fatigue model with coupled meso-plasticity and damage, Fatigue and Fracture of Engineering Materials and Structures 31 (2008) 12–28. , http://dx.doi.org/10.1111/j.1460-2695.2007.01197.x.
  • [27] M.W. Brown, K.J. Miller, Biaxial cyclic deformation behaviour of steels, Fatigue of Engineering Materials and Structures 1 (1979) 93–106.
  • [28] H. Wang, M.W. Brown, A path-independent parameter for fatigue under proportional and non-proportional loading, Fatigue and Fracture of Engineering Materials and Structures 16 (1993) 1285–1298.
  • [29] E.H. Jordan, M.W. Brown, K.J. Miller, Fatigue under severe non-proportional loading, in: K.J. Miller, M.W. Brown (Eds.), Multiaxial Fatigue STP853, ASTM International, Philadelphia, 1985 569–585.
  • [30] S. Babaei, A. Ghasemi-Ghalebahman, Damage-based modification for fatigue life prediction under non-proportional loadings, International Journal of Fatigue 77 (2015) 86–94. , http://dx.doi.org/10.1016/j.ijfatigue.2015.03.002.
  • [31] T. Itoh, M. Sakane, M. Ohnami, D.F. Socie, Nonproportional low-cycle fatigue criterion for type 304 stainless steel, Journal of Engineering Materials and Technology ASME 117 (1995) 285–292. , http://dx.doi.org/10.1115/1.2804541.
  • [32] T. Itoh, T. Nakata, M. Sakane, M. Ohnami, Nonproportional low cycle fatigue of 6061 aluminum alloy under 14 strain paths, in: 5th Int. Conf. Biaxial/Multiaxial Fatigue Fract, 1997.
  • [33] T. Itoh, T. Miyazaki, A damage model for estimating low cycle fatigue lives under nonproportional multiaxial loading, in: A. Carpinteri, M. DeFreitas, A. Spagnoli (Eds.), Biaxial/Multiaxial Fatigue Fract., Elsevier Science BV, Amsterdam, Netherlands, 2003 423–439.
  • [34] T. Itoh, T. Yang, Material dependence of multiaxial low cycle fatigue lives under non-proportional loading, International Journal of Fatigue 33 (2011) 1025–1031. , http://dx.doi.org/ 10.1016/j.ijfatigue.2010.12.001.
  • [35] S. Kida, T. Itoh, M. Sakane, M. Ohnami, D.F. Socie, Dislocation structure and non-proportional hardening of type 304 stainless steel, Fatigue and Fracture of Engineering Materials and Structures 20 (1997) 1375–1386. , http://dx.doi. org/10.1111/j.1460-2695.1997.tb01496.x.
  • [36] T. Itoh, M. Sakane, T. Hata, N. Hamada, A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading, International Journal of Fatigue 28 (2006) 459–466. , http://dx.doi.org/10.1016/j.ijfatigue.2005.08. 007.
  • [37] T. Itoh, M. Sakane, Evaluation of multiaxial low cycle fatigue life under non-proportional loading, in: 10th Int. Conf. Multiaxial Fatigue Fract, 2013.
  • [38] T. Itoh, M. Sakane, K. Ohsuga, Multiaxial low cycle fatigue life under non-proportional loading, International Journal of Pressure Vessels and Piping 110 (2013) 50–56. , http://dx.doi. org/10.1016/j.ijpvp.2013.04.021.
  • [39] A. Fatemi, D.F. Socie, A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue and Fracture of Engineering Materials and Structures 11 (1988) 149–165. , http://dx.doi.org/10.1111/j.1460-2695.1988.tb01169.x.
  • [40] F.A. Kandil, M.W. Brown, K.J. Miller, Biaxial Low Cycle Fatigue Failure of 316 Stainless Steel at Elevated Temperatures, 1982, pp. 203–210 http://www.mendeley.com/research/biaxial- low-cycle-fatigue-failure-316- stainless-steel-elevated- temperatures/ (accessed 03.07.15).
  • [41] J.A. Bannantine, D.F. Socie, A variable amplitude multiaxial fatigue life prediction method, in: Third Int. Conf. Biaxial/ Multiaxial Fatigue, Stuttgart, (1989) 12.1–12.20.
  • [42] R.I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal Fatigue in Engineering, Wiley, 2000.
  • [43] D. McClaflin, A. Fatemi, Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects, International Journal of Fatigue 26 (2004) 773–784. , http://dx.doi.org/10.1016/j.ijfatigue.2003.10.019.
  • [44] M.V. Borodii, V.A. Strizhalo, Analysis of the experimental data on a low cycle fatigue under nonproportional straining, International Journal of Fatigue 22 (2000) 275–282. , http://dx. doi.org/10.1016/S0142-1123(00)00005-0.
  • [45] Y. Wang, Evaluation and comparison of several multiaxial fatigue criteria, International Journal of Fatigue 26 (2004) 17– 25. , http://dx.doi.org/10.1016/S0142-1123(03)00110-5.
  • [46] M.V. Borodii, M.P. Adamchuk, Life assessment for metallic materials with the use of the strain criterion for low-cycle fatigue, International Journal of Fatigue 31 (2009) 1579–1587. , http://dx.doi.org/10.1016/j.ijfatigue.2009.04.011.
  • [47] Y. Liu, S. Mahadevan, Multiaxial high-cycle fatigue criterion and life prediction for metals, International Journal of Fatigue 27 (2005) 790–800. , http://dx.doi.org/10.1016/j.ijfatigue.2005. 01.003.
  • [48] Y. Liu, S. Mahadevan, Strain-based multiaxial fatigue damage modelling, Fatigue and Fracture of Engineering Materials and Structures 28 (2005) 1177–1189.
  • [49] J. Papuga, A survey on evaluating the fatigue limit under multiaxial loading, International Journal of Fatigue 33 (2011) 153–165. , http://dx.doi.org/10.1016/j.ijfatigue.2010.08.001.
  • [50] M. Gladskyi, S. Shukaev, A new model for low cycle fatigue of metal alloys under non-proportional loading, International Journal of Fatigue 32 (2010) 1568–1572. , http://dx.doi.org/ 10.1016/j.ijfatigue.2010.02.016.
  • [51] G.S. Pisarenko, A.A. Lebedev, Deformation, Strength of Materials under Complex Stress Conditions, Naukova Dumka, Kiev, 1976 (in Russian).
  • [52] D. Skibicki, J. Sempruch, Use of a load non-proportionality measure in fatigue under out-of-phase combined bending and torsion, Fatigue and Fracture of Engineering Materials and Structures 27 (2004) 369–377.
  • [53] D.L. McDiarmid, A shear-stress based critical-plane criterion of multiaxial fatigue failure for design and life prediction, Fatigue and Fracture of Engineering Materials and Structures 17 (1994) 1475–1484. , http://dx.doi.org/10.1111/j.1460-2695. 1994.tb00789.x.
  • [54] D. Skibicki, Multiaxial fatigue life and strength criteria for non-proportional loading, Materials Testing 48 (2006) 99–102.
  • [55] M. De Freitas, L. Reis, B. Li, Comparative study on biaxial low-cycle fatigue behaviour of three structural steels, Fatigue and Fracture of Engineering Materials and Structures 29 (2006) 992–999. , http://dx.doi.org/10.1111/j.1460-2695.2006.01061.x.
  • [56] K.C. Liu, A method based on virtual strain-energy parameters for multiaxial fatigue life prediction, in: D.L. McDowell, R. Ellis (Eds.), Adv. Multiaxial Fatigue, ASTM STP 1191, ASTM International, Philadelphia, 1993.
  • [57] Q.H. Vu, D. Halm, Y. Nadot, Multiaxial fatigue criterion for complex loading based on stress invariants, International Journal of Fatigue 32 (2010) 1004–1014. , http://dx.doi.org/ 10.1016/j.ijfatigue.2009.11.006.
  • [58] Ł. Pejkowski, D. Skibicki, A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions, Acta Mechanica Sinica 32 (2015) 696–709. , http://dx.doi.org/ 10.1007/s10409-015-0538-y.
  • [59] L. Susmel, Multiaxial fatigue limits and material sensitivity to non-zero mean stresses normal to the critical planes, Fatigue and Fracture of Engineering Materials and Structures 31 (2008) 295–309. , http://dx.doi.org/10.1111/j.1460-2695.2008. 01228.x.
  • [60] M. Kurek, T. Łagoda, Comparison of the fatigue characteristics for some selected structural materials under bending and torsion, Materials Science 47 (2011) 334–344.
  • [61] M. Kurek, T. Łagoda, Fatigue life assessment for the materials with out-of parallel fatigue characteristics under cyclic loading, Acta Mechanica et Automatica 5 (2011) 61–64 (in Polish).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f3fd0ff-51c4-49af-942a-e6e409c70a06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.