PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Management of biomass of selected grape leaves varieties in the process of methane fermentation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biogas plants are one of the most stable sources of renewable energy. Currently, there is a noticeable increase in the amount of post-production residues from agricultural production and agri-food processing (fruit and vegetable processing, fermentation, beet pulp, or lignocellulosic waste), which, can be used for biogas production after appropriate pretreatment. The aim of this study was to examine the possibility of using the biomass produced during the cultivation of grapes on a selected farm as a substrate for a biogas plant, taking into account the production process. The research was carried out in 2018-2020 in a vineyard located in the Sandomierz Upland in the south-eastern part of Poland. Own rooted vines were grown as a single continuous string with a trunk height of 40 cm and a length of one fixed arm approx. 0.9 m, on which six pivots were left every year after applying a short cut, from which 12-16 fruit shoots were derived, the so-called grapevines. Leaves were collected at random from three locations on the fruiting shoot, a total of 30 leaves in each replicate. Each sample consisted of 1/3 of the leaves collected at the bottom, 1/3 in the middle, and 1/3 at the top of the canopy. Leaf area was estimated with a model 3100 area meter on a sample of 30 leaves from each replicate. Both the quantity and quality of the obtained material as a substrate for methane fermentation were evaluated. Biogas yield tests in optimal conditions for mesophilic bacteria were conducted on three substrate samples referred to as ‘Regent’, ‘Seyval Blanc’, and ‘Solaris’. The yields of the tested material ranged from 51.0 to 59.0 Nm3 biogas per Mg of biomass.
Wydawca
Rocznik
Tom
Strony
17--27
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
  • University of Life Science, Department of Applied Mathematics and Informatics, 28 Głęboka Street, 20-612 Lublin, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  • University of Life Science, Institute of Horticulture Production, Lublin, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
Bibliografia
  • ALLESINA G., PEDRAZZI S., PUGLIA M., MORSELLI N., ALLEGRETTI F., TARTARINI P. 2018. Gasification and wine industry: Report on the use vine pruning as fuel in small-scale gasifiers. European Biomass Conference and Exhibition Proceedings. 26th EUBCE – Copenhagen 2018 p. 722–725. DOI 10.5071/26thEUBCE2018-2CV.2.19.
  • ARENAS SEVILLANO C.B., CHIAPPERO M., GOMEZ X., FIORE S., MARTÍNEZ E.J. 2020. Improving the anaerobic digestion of wine-industry liquid wastes: Treatment by electro-oxidation and use of biochar as an additive. Energies. Vol. 13(22), 5971. DOI 10.3390/en13225971.
  • ARVANITOYANNIS I.S., LADAS D., MAVROMATIS A. 2006a. Potential uses and applications of treated wine waste: A review. International Journal of Food Science & Technology. Vol. 41(5) p. 475–487. DOI 10.1111/j.1365-2621.2005.01111.x.
  • ARVANITOYANNIS I.S., LADAS D., MAVROMATIS A. 2006b. Wine waste treatment methodolog. International Journal of Food Science & Technology. Vol. 41(10) p. 1117–1151. DOI 10.1111/j.1365-2621.2005.01112.x.
  • BERES C., COSTA G.N.S., CABEZUDO I., DA SILVA-JAMES N.K., TELES A.S.C., CRUZ A.P.G., MELLINGER-SILVA C., TONON R.V., CABRAL L.M.C., FREITAS S.P. 2017. Towards integral utilization of grape pomace from winemaking process: A review. Waste Management. Vol. 68 p. 581–594. DOI 10.1016/j.wasman.2017.07.017.
  • BURG P., MAŠÁN V., DUŠEK M., ZEMÁNEK P., RUTKOWSKI K. 2017. Review of energy potential of the wood biomass of orchards and vineyards in the Czech Republic. Research in Agricultural Engineering Vol. 63 p. S1–S7. DOI 10.17221/30/2017-RAE.
  • CALIARI V., BURIN V.M., ROSIER J.P., BORDIGNON LUIZ M.T. 2014. Aromatic profile of Brazilian sparkling wines produced with classical and innovative grape varieties. Food Research International. Vol. 62 p. 965–973. DOI 10.1016/j.foodres.2014.05.013.
  • CHANDRA R., TAKEUCHI H., HASEGAWA T. 2012. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews. Vol. 16(3) p. 1462–1476. DOI https://doi.org/10.1016/j.rser.2011.11.035.
  • CHAU T.T., BRUCKARD W.J., KOH P.T.L., NGUYEN A.V. 2009. A review of factors that affect contact angle and implications for flotation practice. Advances in Colloid and Interface Science. Vol. 150(2) p. 106–115. DOI 10.1016/j.cis.2009.07.003.
  • DA ROS C., CAVINATO C., BOLZONELLA D., PAVAN P. 2016. Renewable energy from thermophilic anaerobic digestion of winery residue: Preliminary evidence from batch and continuous lab-scale trials. Biomass and Bioenergy. Vol. 91 p. 150–159. DOI 10.1016/j.biombioe.2016.05.017.
  • DAWID L. 2019. Current status and perspectives on offshore wind farms development in the United Kingdom. Journal of Water and Land Development. No. 43 p. 49–55. DOI 10.2478/jwld-2019-0062.
  • DE BEM B., BRIGHENTI E., BONIN B., ALLEBRANDT R., ARAUJO L., BRIGHENTI A., BOGO A. 2016. Downy mildew intensity in tolerant grapes varieties in highlands of southern Brazil. BIO Web of Conferences. Vol. 7, 01015. DOI 10.1051/bioconf/20160701015.
  • DE LA FUENTE LLOREDA M. 2018. Use of hybrids in viticulture. A challenge for the OIV. OENO One. Vol. 52 p. 231–234.
  • DEUBLEIN D., STEINHAUSER A. 2008. Biogas from waste and renewable resources: An introduction. John Wiley & Sons. ISBN 978-3-527-62171-2 pp. 470.
  • DIN 38414-S8. Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung; Schlamm und Sedimente (Gruppe S); Bestimmung des Faulverhaltens (S 8) [German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of the amenability to anaerobic digestion (S 8)]. Berlin. Deutsches Institut für Normung pp. 12.
  • DOBROWOLSKA-IWANEK J., GĄSTOL M., WANAT A., KROŚNIAK M., JANCIK M., ZAGRODZKI P. 2016. Wine of cool-climate areas in South Poland. South African Journal of Enology and Viticulture. Vol. 35(1). DOI 10.21548/35-1-980.
  • EBA unated. EBA Biomethane & Biogas Report 2015 published! [online]. European Biogas Association. [Access 22.01.2022]. Available at: https://www.europeanbiogas.eu/biogasreport2015/
  • EL ACHKAR J.H., LENDORMI T., HOBAIKA Z., SALAMEH D., LOUKA N., MAROUN R.G., LANOISELLÉ J.-L. 2016. Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters. Waste Management. Vol. 50 p. 275–282. DOI 10.1016/j.wasman.2016.02.028
  • ERVINE C. 2015. Directive 2004/39/Ec of the European Parliament and of the Council of 21 April 2004. In: Core statutes on company law. Ed. C. Ervine. London. Macmillan Education UK p. 757–759.
  • EurObserv’ER undated. Measures the progress made by renewable energies European Union [online]. [Access 22.01.2022]. Available at: https://www.eurobserv-er.org/
  • FENG H., YUAN F., SKINKIS P., QIAN M. 2015. Influence of cluster zone leaf removal on Pinot noir grape chemical and volatile composition. Food Chemistry. Vol. 173 p. 414–423. DOI 10.1016/j.foodchem.2014.09.149.
  • FIORE S., RUFFINO B., CAMPO G., ROATI C., ZANETTI M.C. 2016. Scale-up evaluation of the anaerobic digestion of food-processing industrial wastes. Renewable Energy. Vol. 96 p. 949–959. DOI 10.1016/j.renene.2016.05.049.
  • GONZÁLEZ-DOMÍNGUEZ R., GARCÍA-BARRERA T., GÓMEZ-ARIZA J.L. 2014. Homeostasis of metals in the progression of Alzheimer’s disease. Biometals. Vol. 27(3) p. 539–549. DOI 10.1007/s10534-014-9728-5.
  • GRALA A., ZIELIŃSKI M., DUDEK M., DĘBOWSKI M. 2014. Metody destabilizacji biomasy lignocelulozowej przed konwersją do biopaliw [Methods of destabilization of lignocellulosic biomass before conversion to biofuels]. Gaz, Woda i Technika Sanitarna. Nr 5 p. 173–176.
  • ISCI A., DEMIRER G.N. 2007. Biogas production potential from cotton wastes. Renewable Energy. Vol. 32(5) p. 750–757. DOI 10.1016/j.renene.2006.03.018.
  • RADDOVÁ J., STEFKOVA A., SOTOLÁŘ R., BARÁNEK M. 2016. Genetic analysis of vitis interspecific hybrids occurring in vineyards of the Czech Republic. Pakistan Journal of Botany. Vol. 48(2) p. 681–688.
  • JASKO J., SKRIPSTS E., DUBROVSKIS V. 2012. Biogas production of winemaking waste in anaerobic fermentation process. 11th International Scientific Conference “Engineering for rural development”. Jelgava, 24–25.05.2012 p. 576–579.
  • KESHTKAR H., ASHBAUGH L.L. 2007. Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning. Atmospheric Environment. Vol. 41(13) p. 2729–2739. DOI 10.1016/j.atmosenv.2006.11.043.
  • KAPŁAN M., NAJDA A. 2014. Antioxidant activity of vine fruits depending on their colouring. Chemija. Vol. 25(1) p. 51–55.
  • KOWR undated. Informacja dla plantatorów winorośli i producentów wina w sprawie wejścia w życie nowej ustawy o wyrobach winiarskich [Information for vine growers and wine producers on the entry into force of the new law on wine products]. Krajowy Ośrodek Wsparcia Rolnictwa [online]. [Access 24.01.2022]. Available at: https://www.kowr.gov.pl/interwencja/wino
  • LABATUT R., ANGENENT L.T., SCOTT N. 2011. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology. Vol. 102(3) p. 2255–2264. DOI 10.1016/j.biortech.2010.10.035.
  • LISEK J. 2004. Odporność pąków trzydziestu odmian winorośli (Vitis sp.) na uszkodzenia mrozowe w warunkach centralnej Polski [Winter hardiness of thirty grape cultivar buds (Vitis sp.) under conditions of Central Poland] [online]. Zeszyty Problemowe Postępów Nauk Rolniczych. Z. 497(2) p. 405–410. [Access 22.01.2022]. Available at: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-325cdaf2-4d62-4308-9b51-4930010a2269
  • LISEK J. 2008. Climatic factors affecting development and yielding of grapevine in Central Poland. Journal of Fruit and Ornamental Plant Research. Vol. 16 p. 149–161.
  • LISEK J. 2009. Frost damage of buds on one-year-old shoots of wine and table grapevine cultivars in central poland following the winter of 2008/2009. Journal of Fruit and Ornamental Plant Research. Vol. 17(2) p. 285–293.
  • LISEK J. 2011. Winorośl w uprawie przydomowej i towarowej [Grapevines in home and commercial growing]. Warszawa. Hortpress. ISBN 978-83-61574-72-9 pp. 216.
  • MANZONE M. 2016. A bundler prototype for forestry and agricultural residue management for energy production. International Journal of Forest Engineering. Vol. 27(2) p. 103–108. DOI 10.1080/14942119.2016.1158598.
  • MOLCAN P., LU G., BRIS T.L., YAN Y., TAUPIN B., CAILLAT S. 2009. Characterisation of biomass and coal co-firing on a 3MWth Combustion Test Facility using flame imaging and gas/ash sampling techniques. Fuel. Vol. 88(12) p. 2328–2334. DOI 10.1016/j.fuel.2009.06.027.
  • MONTES J.A., RICO C. 2020. Biogas potential of wastes and by-products of the alcoholic beverage production industries in the Spanish region of Cantabria. Applied Sciences. Vol. 10(21), 7481. DOI 10.3390/app10217481.
  • MYCZKO A., MYCZKO R., KOŁODZIEJCZYK T., GOLIMOWSKA R., LENARCZYK J., JANAS Z., KLIBER A., KARŁOWSKI J., DOLSKA M. 2011. Budowa i eksploatacja biogazowni rolniczych. Poradnik dla inwestorów zainteresowanych budową biogazowni rolniczych [Construction and operation of a biogas plant in the city center. A guide for investors interested in building a biogas plant in the center]. Warszawa–Poznań. Wydaw. ITP. ISBN 978-83-62416-23-3 pp. 140.
  • NITSOS C., MATSAKAS L., TRIANTAFYLLIDIS K., ROVA U., CHRISTAKOPOULOS P. 2015. Evaluation of Mediterranean agricultural residues as a potential feedstock for the production of biogas via anaerobic fermentation. BioMed Research International. Vol. 2015, 171635 p. 1–6.DOI 10.1155/2015/171635.
  • OIV 2019. OIV 2019 report on the world vitivinicultural situation [online]. International Organisation of Vine and Wine. [Access 24.012022]. Available at: http://www.oiv.int/en/oiv-life/oiv-2019-report-on-the-world-vitivinicultural-situation
  • PN-EN 12176:2004. Charakterystyka osadów ściekowych – Oznaczanie wartości pH [Characterization of sludge – determination of pH value] [online]. [Access 24.01.2022]. Available at: https://sklep.pkn.pl/pn-en-12176-2004p.html
  • PN-EN 12880:2004. Charakterystyka osadów ściekowych – Oznaczanie suchej pozostałości i zawartości wody [Characterisation of sewage sludge – Determination of dry residue and water content]. [online]. [Access 24.01.2022]. Available at: https://sklep.pkn.pl/pn-en-12880-2004p.html
  • Procam undated. Stacja sadownicza „Pęchów, gm. Klimontów” [Orchard station „Pęchów, com. Klimontów” [online]. [Access 24.01.2022]. Gdańsk. Procam – Agronomia sukcesu. Available at: https://horti.procam.pl/pogoda,12
  • PULVIRENTI A., RONGA D., ZAGHI M., TOMASSELLI A.R., MANNELLA L., PECCHIONI N. 2015. Pelleting is a successful method to eliminate the presence of Clostridium spp. from the digestate of biogas plants. Biomass and Bioenergy. Vol. 81 p. 479–482. DOI 10.1016/j.biombioe.2015.08.008.
  • RAPOSO F., DE LA RUBIA M.A., FERNÁNDEZ-CEGRÍ V., BORJA R. 2012. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews. Vol. 16 (1) p. 861–877. DOI 10.1016/j.rser.2011.09.008.
  • ROATI C., FIORE S., RUFFINO B., MARCHESE F., NOVARINO D., ZANETTI M.C. 2012. Preliminary evaluation of the potential biogas production of food-processing industrial wastes. American Journal of Environmental Sciences. Vol. 8(3) p. 291–296. DOI 10.3844/ajessp.2012.291.296.
  • RONGA D., PELLATI F., BRIGHENTI V., LAUDICELLA K., LAVIANO, L., FEDAILAINE M., BENVENUTI S., PECCHIONI N., FRANCIA E. 2018. Testing the influence of digestate from biogas on growth and volatile compounds of basil (Ocimum basilicum L.) and peppermint (Mentha x piperita L.) in hydroponics. Journal of Applied Research on Medicinal and Aromatic Plants. Vol. 11 p. 18–26. DOI 10.1016/j.jarmap.2018.08.001.
  • RONGA D., SETTI L., SALVARANI C., LEO R.D., BEDIN E., PULVIRENTI A., MILC J., PECCHIONI N., FRANCIA E. 2019. Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Scientia Horticulturae. Vol. 244 p. 172–181. DOI 10.1016/j.scienta.2018.09.037.
  • ROSÚA J. M., PASADAS M. 2012. Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar, for providing heating in homes. Renewable and Sustainable Energy Reviews. Vol. 16(6) p. 4190–4195. DOI 10.1016/j.rser.2012.02.035.
  • SCANO E.A., ASQUER C., PISTIS A., ORTU L., DEMONTIS V., COCCO D. 2014. Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Conversion and Management. Vol. 77 p. 22–30. DOI 10.1016/j.enconman.2013.09.004.
  • SCARLAT N., DALLEMAND J., BANJA M. 2013. Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals. Renewable and Sustainable Energy Reviews. Vol. 18 p. 595–606. DOI 10.1016/j.rser.2012.10.040.
  • SPINELLI R., SCHWEIER J., FRANCESCO F. 2012. Harvesting techniques for non-industrial SRF biomass plantations on farmland. Biosystems Engineering. Vol. 113 p. 319–324. DOI 10.4081/jae.2013.243.
  • VAN DAM J., FAAIJ A.P.C., LEWANDOWSKI I., FISCHER G. 2007. Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass and Bioenergy. Vol. 31(6) p. 345–366. DOI 10.1016/j.biombioe.2006.10.001.
  • VOYTOVYCH I., MALOVANYY M., ZHUK V., MUKHA O. 2020. Facilities and problems of processing organic wastes by family-type biogas plants in Ukraine. Journal of Water and Land Development. No. 45 p. 185–189. DOI 10.24425/jwld.2020.133493.
  • WEILAND P. 2003. Production and energetic use of biogas from energy crops and wastes in Germany. Applied Biochemistry and Biotechnology. Vol. 109(1) p. 263–274. DOI 10.1385/ABAB:109:1-3:263.
  • WRZESIŃSKA-JĘDRUSIAK E., ŁASKA-ZIEJA B., HERKOWIAK M., MYCZKO A., KLIMEK K. 2020. Analiza gnojowicy świńskiej jako substratu do monosubstratowej instalacji biogazowej [Analysis of pig slurry as a substrate for a monosubstrate biogas plant]. Przemysł Chemiczny. Nr 1(11) p. 97–98. DOI 10.15199/62.2020.11.12.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f3d9621-66bc-48d6-bc6f-336ddade8670
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.