Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Nowa metoda poboru wody z hydrantu zewnętrznego w przypadku wielkoobszarowych awarii zasilania
Języki publikacji
Abstrakty
The water supply system should be prepared to function both in normal conditions and in a crisis situation. A large-scale power failure may limit or completely stop the operation of water supply systems. For this reason, blackout is considered one of the greatest threats to the continuity of the supply of drinking water. The study assessed the preparation of a water supply company for water supply in a crisis situation based on conventional solutions. The idea of an original solution for drawing water from the water supply network during low pressure was presented. The developed water tap allows the use of water accumulated in water pipes by drawing it from external hydrants. The method of arranging draw-off points in the water supply network is presented. The accumulated amounts of water inside water pipes can provide significant support for the affected population during periods of lack of electricity supply, preventing the operation of water pumping stations. Obtaining treated water and distributing it among residents will reduce the health risks associated with the consumption of water of uncertain origin.
Sieć wodociągowa powinna być przygotowana do funkcjonowania zarówno w warunkach normalnych, jak i w sytuacjach kryzysowych. Wielkoobszarowa awaria zasilania może spowodować ograniczenie lub całkowite wstrzymanie pracy systemów wodociągowych. Z tego powodu blackout jest uznawany za jedno z największych zagrożeń dla ciągłości dostawy wody przeznaczonej do spożycia. W pracy przeprowadzono ocenę przygotowania przedsiębiorstwa wodociągowego na dostawę wody w sytuacji kryzysowej w oparciu o rozwiązania konwencjonalne. Przedstawiono ideę autorskiego rozwiązania poboru wody z sieci wodociągowej w czasie obniżonego ciśnienia. Opracowana bateria czerpalna umożliwia wykorzystanie wody zakumulowanej w przewodach wodociągowych poprzez jej pobór z hydrantów zewnętrznych. Przedstawiono sposób rozmieszczenia punktów czerpalnych na sieci wodociągowej. Zgromadzone ilości wody wewnątrz przewodów, mogą stanowić znaczne wsparcie dla poszkodowanej ludności w okresach braku dostaw energii elektrycznej, uniemożliwiających pracę pompowni wodociągowych. Pozyskanie uzdatnionej wody i jej rozdysponowanie wśród mieszkańców pozwoli na ograniczenie ryzyka zdrowotnego związanego ze spożyciem wody o niepewnym pochodzeniu.
Czasopismo
Rocznik
Tom
Strony
48--52
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture Rzeszow University of Technology, Rzeszow
autor
- Aldesa Construcciones Poland, Warszawa
Bibliografia
- [1] ASCE Critical Infrastructure Guidance Task Committee. Guiding Principles for the Nation’s Critical Infrastructure. American Society of Civil Engineers, 2009.
- [2] Austrian Association for Gas and Water (ÖVGW). Trinkwassernotversorgung, Krisenvorsorgeplanung in der Trinkwasserversorgung: W 74; Österreichische Vereinigung für das Gas- und Wasserfach: Vienna, Austria, 2017.
- [3] Boryczko K, Piegdoń I, Szpak D, Żywiec J. Risk Assessment of Lack of Water Supply Using the Hydraulic Model of the Water Supply. Resources, 2021, 10(5):43. https://doi.org/10.3390/resources10050043
- [4] Chandel SS, Naik MN, Chandel R. Review of performance studies of direct coupled photo-voltaic water pumping systems and case study. Renewable and Sustainable Energy Reviews, 2017, 76, 163-175. https://doi.org/10.1016/j.rser.2017.03.019.
- [5] Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available online: https://www.legislation.gov.uk/eudr/2020/2184 (accessed on 22 September 2024).
- [6] Dungboyev S, Karimov A, Karshiyeva N. Questions of development and use of renewable energy sources for low power enterprises. E3S Web Conf., 2020, 216, 01132. https://doi.org/10.1051/e3sconf/202021601132
- [7] Federal Ministry of the Interior (BMI). Konzeption Zivile Verteidigung (KZV): Conception Civil Defense; Bundesministerium des Innern: Berlin, Germany, 2016.
- [8] Ghandi M, Roozbahani A. Risk Management of Drinking Water Supply in Critical Conditions Using Fuzzy PROMETHEE V Technique. Water Resources Management, 2020, 34, 595-615. https://doi.org/10.1007/s11269-019-02460-z
- [9] Gómez SOA. The Emergence of Food Panic: Evidence from the Great East Japan Earthquake. J. Disaster Res., 2013, 8, 814-825. https://doi:10.20965/jdr.2013.p0814
- [10] Gunnarsdottir MJ, Gardarsson SM, Elliott M, et al. Benefits of Water Safety Plans: Microbiology, Compliance, and Public Health. Environmental Science & Technology, 2012, 46(14), 7782-7789. https://doi.org/10.1021/es300372h
- [11] Haes Alhelou H, Hamedani-Golshan ME, Njenda TC, Siano P. A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies, 2019, 12(4):682. https://doi.org/10.3390/en12040682
- [12] Hajkowicz S, Higgins A. A comparison of multiple criteria analysis techniques for water resource management. Eur J Oper Res, 2008, 184(1), 255-265 https://doi:10.1016/j.ejor.2006.10.045
- [13] Hunter L, Gerritsen S, Egli V. Changes in eating behaviours due to crises, disasters and pandemics: a scoping review. Nutrition & Food Science, 2023, 53, 2, 358-390. https://doi.org/10.1108/NFS-12-2021-0385
- [14] Jurga A, Pacak A, Pandelidis D, Kaźmierczak B. Condensate as a water source in terrestrial and extra-terrestrial conditions. Water Resour. Ind., 2023, 29, 100196. https://doi.org/10.1016/j.wri.2022.100196
- [15] Kotulla M, Goňo M, Goňo R, Vrzala M, Leonowicz Z, Kłosok-Bazan I, Boguniewicz-Zabłocka J. Renewable Energy Sources as Backup for a Water Treatment Plant. Energies. 2022, 15(17):6288. https://doi.org/10.3390/en15176288
- [16] Kutyłowska M. Forecasting failure rate of water pipes. Water Supply, 2019, 19 (1), 264-273. https://doi.org/10.2166/ws.2018.078
- [17] Maal-Bared R, Long D, Penner L. Prevention of bacterial contamination of stored hydrants: Utility recommendations for hydrant inlet orientation and capping. Process Safety and Environmental Protection, 2020, 133, 224-229. https://doi.org/10.1016/j.psep.2019.11.019
- [18] Majchrzak D, Michalski K, Reginia-Zacharski J. Readiness of the Polish Crisis Management System to Respond to Long-Term, Large-Scale Power Shortages and Failures (Blackouts). Energies, 2021, 14(24):8286. https://doi.org/10.3390/en14248286
- [19] Meunier S, Heinrich M, Quéval L, Cherni JA, Vido L, Darga A, Dessante P, Multon B, Kitanidis PK, Claude Marchand C. A validated model of a photovoltaic water pumping system for off-grid rural communities. Applied Energy, 2019, 241, 580-591. https://doi.org/10.1016/j.apenergy.2019.03.035.
- [20] Piegdoń I. A New Concept of Crisis Water Management in Urban Areas Based on the Risk Maps of Lack of Water Supply in Response to European Law. Resources, 2022, 11(2):17. https://doi.org/10.3390/resources11020017
- [21] Rak J.R. Logistics of Water Supply in Crisis Situations. In Water Supply, Quality and Water Protection; Dymaczewski, Z., Jeż-Walkowiak, J., Nowak, M., Eds.; Polish Association of Sanitary Engineers and Technicians Branch in Wielkopolska: Poznań, Poland, 2014, 129-137. (In Polish)
- [22] Roeger A, Tavares AF. Do Governance Arrangements Affect the Voluntary Adoption of Water Safety Plans? An Empirical Study of Water Utilities in Portugal. Water Resour. Manag., 2020, 34, 1757-1772. https://doi.org/10.1007/s11269-020-02527-2
- [23] Shah D, Panchal M, Sanghvi A, Chavda H, Shah M. Holistic review on geosolar hybrid desalination system for sustainable development. Appl Water Sci, 2020, 10, 155. https://doi.org/10.1007/s13201-020-01241-z
- [24] Sisto NP, Ramírez AI, Aguilar-Barajas I, Magana-Rueda V. Climate threats, water supply vulnerability and the risk of a water crisis in the Monterrey Metropolitan Area (Northeastern Mexico). Physics and Chemistry of the Earth, 2016, 91, 2-9. https://doi.org/10.1016/j.pce.2015.08.015
- [25] Supreme Chamber of Control (SCC). Ensuring the Security of Water Supply to Large Urban Agglomerations in the Event of Crisis Situations, 2017. Available online: https://www.nik.gov.pl/plik/id,14969,vp,17439.pdf (accessed on 10 September 2024).
- [26] Szpak D, Szczepanek A. A New Method of Water Supply in Crisis Situation. Water, 2023, 15(17):3160. https://doi.org/10.3390/w15173160
- [27] Świętochowski K, Świętochowska M, Kalenik M, Gwoździej-Mazur J. Analysis of the Use of a Low-Power Photovoltaic System to Power a Water Pumping Station in a Tourist Town. Energies, 2023, 16(21):7435. https://doi.org/10.3390/en16217435
- [28] Teixeira MA, Salman T, Zolanvari M, Jain R, Meskin N, Samaka M. SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach. Future Internet, 2018, 10(8):76. https://doi.org/10.3390/fi10080076
- [29] Tuptuk N, Hazell P, Watson J, Hailes S. A Systematic Review of the State of Cyber-Security in Water Systems. Water, 2021, 13(1):81. https://doi.org/10.3390/w13010081
- [30] Venkata Ramana G, Sudheer Chekka VSS. Validation and Examination of Existing Water Distribution Network for Continuous Supply of Water Using EPANET. Water Resour Manage, 2018, 32, 1993-2011. https://doi.org/10.1007/s11269-017-1889-x
- [31] Villon P, Nace A. Crisis Management in Water Distribution Networks. In: Ibrahimbegovic, A., Zlatar, M. (eds) Damage Assessment and Reconstruction after War or Natural Disaster. NATO Science for Peace and Security Series C: Environmental Security. Springer 2009, Dordrecht. https://doi.org/10.1007/978-90-481-2386-5_10
- [32] Yazdanparast M, Ghorbani M, Salajegheh A, Kerachian R. Development of a Water Security Conceptual Model by Combining Human-Environmental System (HES) and System Dynamic Approach. Water Resour Manage, 2023, 37, 1695-1709. https://doi.org/10.1007/s11269-023-03449-5
- [33] Younos T, Lee J, Parece TE. Alternative Water Sources for Producing Potable Water Advances in Research & Technology, Springer 2023. https://doi.org/10.1007/978-3-031-46502-4
- [34] Zdeb M, Zamorska J, Papciak D, Słyś D. The Quality of Rainwater Collected from Roofs and the Possibility of Its Economic Use. Resources, 2020, 9(2):12. https://doi.org/10.3390/resources9020012
- [35] Zimoch I, Grabuńczyk M. Czas pracy bezuszkodzeniowej sieci wodociągowej miasta Głubczyce jako element bezpieczeństwa funkcjonowania systemu zaopatrzenia w wodę. Instal, 2021, 7-8, 45-52. DOI 10.36119/15.2021.78.7 (In Polish)
- [36] Żywiec J, Szpak D, Piegdoń I, Boryczko K, Pietrucha-Urbanik K, Tchórzewska-Cieślak B, Rak J. An Approach to Assess the Water Resources Reliability and Its Management. Resources, 2023, 12(1):4. https://doi.org/10.3390/resources12010004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f2f2e3c-11b3-4557-b640-7d13e3fca709
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.