PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of aluminium on microstructure, mechanical property and texture evolution of dual phase Mg-8Li alloy in different processing conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the possibility of enhancing the strength with ductility of dual-phase magnesium (Mg)-8 lithium (Li) alloy by the combination of alloying addition aluminium (Al) and suitable thermo-mechanical processing. Microstructural evolution, phase analysis and texture studies were performed for Mg-8Li-xAl (x = 0, 2,4 and 6) alloys with the help of scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is understood from the texture studies that the addition of Al to the Mg-8Li alloys activates the non-basal slip at room temperature. In turn, it facilitates the recovery process, hence a substantial improvement in plastic deformation after annealing of the alloys is observed. This is attributed to non-basal slip activity at room temperature. The presence of fine intermetallic compounds in the annealed Mg-8Li-xAl (x = 4 and 6) alloys leads to the higher ultimate strength (193 ± 7 MPa and 267 ± 9 MPa) and ductility (20% and 17%), respectively.
Rocznik
Strony
1332--1344
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Green Energy Materials and Manufacturing Research Group (GEMM), Department of Metallurgical and Materials Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, India
autor
  • Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
  • Green Energy Materials and Manufacturing Research Group (GEMM), Department of Metallurgical and Materials Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, India
autor
  • Department of Materials Engineering, Indian Institute of Science, Bangalore, India
Bibliografia
  • [1] F. Czerwinski, Magnesium Alloys – Design, Processing and Properties, 2011, http://dx.doi.org/10.5772/560.
  • [2] A. Białobrzeski, K. Saja, K. Hubner, Ultralight magnesiumlithium alloys, Arch. Foundry Eng. 7 (2007) 11–16.
  • [3] R. Mahmudi, M. Shalbafi, M. Karami, A.R. Geranmayeh, Effect of Li content on the indentation creep characteristics of cast Mg-Li-Zn alloys, Mater. Des. 75 (2015) 184–190. http://dx.doi.org/10.1016/j.matdes.2015.03.003.
  • [4] L.W.F. Mackenzie, M. Pekguleryuz, The influences of alloying additions and processing parameters on the rolling microstructures and textures of magnesium alloys, Mater. Sci. Eng. A 480 (2008) 189–197. http://dx.doi.org/10.1016/j.msea.2007.07.003.
  • [5] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, The activity of non-basal slip systems and dynamic recovery At room temperature in fine-grained AZ31B magnesium alloys, Acta Mater. 51 (2003) 2055–2065. http://dx.doi.org/10.1016/S1359-6454(03)00005-3.
  • [6] H. Fan, J.A. El-Awady, Towards resolving the anonymity of pyramidal slip in magnesium, Mater. Sci. Eng. A 644 (2015) 318–324. , http://dx.doi.org/10.1016/j.msea.2015.07.080.
  • [7] R.K. Peter Minárik, J. Čížek, J. Veselý, P. Hruška, B. Hadzima, Nanocrystalline aluminium particles inside Mg-4Li-4Al-2RE magnesium alloy after severe plastic deformation, Mater. Charact. 127 (2017) 248–252. http://dx.doi.org/10.1016/j.matchar.2016.12.021.
  • [8] T. Al-Samman, Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy, Acta Mater. 57 (2009) 2229–2242. http://dx.doi.org/10.1016/j.actamat.2009.01.031.
  • [9] S.R. Agnew, J.A. Horton, M.H. Yoo, Transmission electron microscopy investigation of […] dislocations in Mg and asolid solution Mg-Li alloys, Metall. Mater. Trans. A 33 (2002) 851–858. http://dx.doi.org/10.1007/s11661-002-0154-x.
  • [10] M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, T.G. Langdon, Improving the superplastic properties of a two-phase Mg–8% Li alloy through processing by ECAP, Mater. Sci. Eng. A 410–411 (2005) 439–442. http://dx.doi.org/10.1016/j. msea.2005.08.143.
  • [11] P. Minárik, R. Král, J. Čížek, F. Chmelík, Effect of different c/a ratio on the microstructure and mechanical properties In magnesium alloys processed by ECAP, Acta Mater. 107 (2016) 83–95. http://dx.doi.org/10.1016/j.actamat.2015.12.050.
  • [12] S.S. Nene, B.P. Kashyap, N. Prabhu, Y. Estrin, T. Al-Samman, Microstructure refinement and its effect on specific strength and bio-corrosion resistance in ultralight Mg-4Li-1Ca (LC41) alloy by hot rolling, J. Alloys Compd. 615 (2014) 501–506. http://dx.doi.org/10.1016/j.jallcom.2014.06.151.
  • [13] N. Tahreen, D.L. Chen, M. Nouri, D.Y. Li, Effects of aluminium content and strain rate on strain hardening behavior of cast magnesium alloys during compression, Mater. Sci. Eng. A 594 (2014) 235–245.
  • [14] Q. Shi, L. Bian, W. Liang, Z. Chen, F. Yang, Y. Wang, Effects of adding Al-Si eutectic alloy and hot rolling on microstructures and mechanical behavior of Mg – 8Li alloys, J. Alloys Compd. 631 (2015) 129–132.
  • [15] V. Kumar, Govind, R. Shekhar, R. Balasubramaniam, K. Balani, Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys, Mater. Sci. Eng. A 547 (2012) 38–50. http://dx.doi.org/10.1016/j.msea.2012.03.074.
  • [16] Y. Zou, L. Zhang, H. Wang, X. Tong, M. Zhang, Z. Zhang, Texture evolution and their effects on the mechanical properties of duplex Mg-Li alloy, J. Alloys Compd. 669 (2016) 72–78. http://dx.doi.org/10.1016/j.jallcom.2016.01.174.
  • [17] J.-J. Fundenberger, B. Beausir, Université de Lorraine – Metz, 2015, JTEX – Software for Texture Analysis, http://jtex-software.eu/.
  • [18] A. Sanschagrin, R. Tremblay, R. Angers, D. Dubé, Mechanical properties and microstructure of new magnesium-lithium base alloys, Mater. Sci. Eng. A 220 (1996) 69–77. http://dx.doi.org/10.1016/S0921-5093(96)10460-3.
  • [19] H.G. Paris, W.H. Hunt, TMS-AIME Nonferrous Metals Committee, Metallurgical Society (U.S.). Meeting, Advances in Magnesium Alloys and Composites, The Minerals, Metals and Materials Society, 1988 https://books.google.co.in/books? id=00o1AQAAIAAJ.
  • [20] M.L.Y. Iwadate, Electrochemical study of mass transfer in Li-Mg and Li-Mg-Al alloys, J. Appl. Electrochem. 17 (1987) 385–397.
  • [21] W. Guoqing, Z. Tao, S. Wei, W. Sujie, H. Zheng, Aging behavior of YAl2p/Mg-14Li-1Al composite, Rare Met. Mater. Eng. 43 (2014) 2958–2961. http://dx.doi.org/10.1016/S1875-5372(15)60041-8.
  • [22] X. Guo, R. Wu, J. Zhang, B. Liu, M. Zhang, Influences of solid solution parameters on the microstrucuture and hardness of Mg-9Li-6Al and Mg-9Li-6Al-2Y, Mater. Des. 53 (2014) 528–533. http://dx.doi.org/10.1016/j.matdes.2013.07.011.
  • [23] X. Li, F. Jiao, T. Al-Samman, S. Ghosh Chowdhury, S.G. Chowdhury, S. Ghosh Chowdhury, Influence of second-phase precipitates on the texture evolution of Mg-Al-Zn alloys during hot deformation, Scr. Mater. 66 (2012) 159–162. http://dx.doi.org/10.1016/j.scriptamat.2011.10.028.
  • [24] S. Biswas, S. Suwas, R. Sikand, A.K. Gupta, Analysis of texture evolution in pure magnesium and the magnesium alloy AM30 during rod and tube extrusion, Mater. Sci. Eng. A 528 (2011) 3722–3729. http://dx.doi.org/10.1016/j.msea.2011.01.021.
  • [25] H.M.U.F. Kocks, C.N. Tomé, H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, 1998.
  • [26] H.Y. Wu, P.H. Sun, C.H. Chiu, G.Z. Zhou, Strain-hardening behavior of Mg-Li-Zn alloy thin sheets under tension, Adv. Mater. Res. 146–147 (2010) 1361–1364. http://dx.doi.org/10.4028/www.scientific.net/AMR.146-147.1361.
  • [27] Z. Trojanová, Z. Drozd, P. Lukáč, F. Chmelík, Deformation behaviour of Mg–Li alloys at elevated temperatures, Mater. Sci. Eng. A 410–411 (2005) 148–151. http://dx.doi.org/10.1016/j.msea.2005.08.088.
  • [28] C.H. Cáceres, A.H. Blake, On the strain hardening behaviour of magnesium at room temperature, Mater. Sci. Eng. A 462 (2007) 193–196. http://dx.doi.org/10.1016/j.msea.2005.12.113.
  • [29] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171–273. http://dx.doi.org/10.1016/S0079-6425(02)00003-8.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f29b045-5e87-42d2-9eb8-1d663b6f4781
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.