PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Salinity on Soil Respiration and Nitrogen Dynamics

Identyfikatory
Warianty tytułu
PL
Wpływ zasolenia na respirację gleby i dynamikę azotu
Języki publikacji
EN
Abstrakty
EN
A facility of BaPS (Barometric Process Separation) and indoor incubation experiments were used to determine the effect of soil salinity on soil respiration and nitrogen transformation. The rates of soil respiration, gross nitrification, denitrification, ammonium and nitrate nitrogen concentrations and relevant soil parameters were measured. Results showed that soil respiration and nitrification and denitrification rates were all affected by soil salinity. Furthermore, the effect of soil salinity level on nitrification and denitrification rates had a threshold value (EC1:5 = 1.13 dS/m). When soil salinity level was smaller to this threshold value, the rates of nitrification and denitrification increased with soil salinity while they were reduced when soil salinity level was larger than the threshold value. Moreover, the changing law of soil respiration rate with soil salinity was similar with the nitrification and denitrification rates while the variation tendency was opposite. In addition, the transformation form urea to ammonium and nitrate nitrogen was also reduced with the increase of soil salinity and the reduced effect could be expressed by exponential functions.
PL
Proces BaPS (Ciśnieniowy Proces Separacji) oraz inkubacja pokojowa zostały wykorzystane do określenia wpływu zasolenia gleby na jej oddychanie i transformację azotu. Mierzono szybkości: respiracji gleby, całkowitej nitryfikacji i denitryfikacji, a także stężenie azotu amonowego i azotanowego oraz wartości odpowiednich parametrów gleby. Wyniki wykazały, że respiracja glebowa oraz szybkości nitryfikacji i denitryfikacji były uzależnione od zasolenia gleby. Ponadto stwierdzono, że wpływ poziomu zasolenia gleby na szybkość nitryfikacji i denitryfikacji miał wartość progową (EC1:5 = 1,13 dS/m). Gdy poziom zasolenia gleby był mniejszy od tej wartości progowej, szybkości nitryfikacji i denitryfikacji rosły wraz ze wzrostem zasolenia gleby. Jeżeli zasolenie gleby był większe od progowego, to szybkości te malały. Co więcej, zmiany charakteru zależności szybkości respiracji gleby od jej zasolenia były porównywalne z szybkością nitryfikacji i denitryfikacji, podczas gdy tendencja zmian była odwrotna. Ponadto, transformacja mocznika do amoniaku i azotu azotanowego również zmniejszała się przy wzroście zasolenia gleby, a efekt takiego zmniejszania może być wyrażony funkcją wykładniczą.
Rocznik
Strony
519--530
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
Bibliografia
  • [1] Troy SM, Lawlor PG, O' Flynn CJ, Healy MG. Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol Biochem. 2013;60:173-181. DOI: 10.1016/j.soilbio.2013.01.019.
  • [2] Lompo DJP, Sangare SAK, Compaore E, Sedogo MP, Predotova M, Schlecht E, Buerkert A. Gaseous emissions of nitrogen and carbon from urban vegetable gardens in Bobo-Dioulasso, Burkina Faso. J of Plant Nutrit and Soil Sci. 2012;175(6):846-853. DOI: 10.1002/jpln.201200012.
  • [3] Moseman-Valtierra SM, Armaiz-Nolla K, Levin LA. Wetland response to sedimentation and nitrogen loading: diversification and inhibition of nitrogen-fixing microbes. Ecol Appl. 2010;20(6):1556-1568. DOI: 10.1890/08-1881.1.
  • [4] Zeng, WZ, Xu C, Wu JW, Huang JS. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. J of Arid Land. 2013. DOI: 10.1007/s40333-013-0176-9.
  • [5] Bono A, Alvarez R. Nitrogen mineralization in a coarse soil of the semi-arid Pampas of Argentina. Arch of Agron and Soil Sci. 2013;59(2):259-272. DOI: 10.1080/03650340.2011.625413.
  • [6] Antil RS, Sharma T, Inubushi K. Laboratory and greenhouse assessment of plant-available N in organic materials. Arch of Agron and Soil Sci. 2013;59(3):411-422. DOI: 10.1080/03650340.2011.636355.
  • [7] Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biol. 2009;15(4):808-824. DOI: 10.1111/j.1365-2486.2008.01681.x.
  • [8] Lai LM, Zhao XC, Jiang LH, Wang YJ, Luo LG, Zheng YR, et al. Soil respiration in different agricultural and natural ecosystems in an arid region. Plos One. 2012;7(10):1-9. DOI: e4801110.1371/journal.pone.0048011.
  • [9] Han GX, Yu JB, Li HB, Yang LQ, Wang GM, Mao PL, et al. Winter soil respiration from different vegetation patches in the Yellow River Delta, China. Environ Manage. 2012;50(1):39-49. DOI: 10.1007/s00267-012-9869-7.
  • [10] Bai JH, Gao HF, Xiao R, Wang JJ, Huang C. A review of soil nitrogen mineralization as affected by water and salt in coastal wetlands: issues and methods. Clean-Soil Air Water. 2012;40(10):1099-1105. DOI: 10.1002/clen.201200055.
  • [11] Silva RG, Jorgensen EE, Holub SM, Gonsoulin ME. Relationships between culturable soil microbial populations and gross nitrogen transformation processes in a clay loam soil across ecosystems. Nutr Cycl Agroecos. 2005;71(3):259-270. DOI: 10.1007/s10705-004-6378-y.
  • [12] Muller C, Abbasi MK, Kammann C, Clough TJ, Sherlock RR, Stevens RJ, Jager HJ. Soil respiratory quotient determined via barometric process separation combined with nitrogen-15 labeling. Soil Sci Soc Am J. 2004;68(5):1610-1615.
  • [13] Mikha MM, Rice CW, Milliken GA. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol Biochem. 2005;37(2):339-347. DOI: 10.1016/j.soilbio.2004.08.003.
  • [14] Mavi MS, Marschner P, Chittleborough DJ, Cox JW, Sanderman J. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biol Biochem. 2012;45:8-13. DOI: 10.1016/j.soilbio.2011.10.003.
  • [15] Buragiene S, Sarauskis E, Romaneckas K, Sakalauskas A, Uzupis A, Katkevicius E. Soil temperature and gas (CO2 and O2) emissions from soils under different tillage machinery systems. J Food Agric Environ. 2011;9(2):480-485.
  • [16] Rietz DN, Haynes RJ. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem. 2003;35(6):845-854. DOI: 10.1016/s0038-0717(03)00125-1.
  • [17] Khoi CM, Guong VT, Merckx R. Predicting the release of mineral nitrogen from hypersaline pond sediments used for brine shrimp Artemia franciscana production in the Mekong Delta. Aquaculture. 2006;257(1-4):221-231 DOI: 10.1016/j.aquaculture.2006.02.075.
  • [18] Ingwersen J, Butterbach-Bahl K, Gasche R, Richter O, Papen H. Barometric process separation: New method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Sci Soc Am J. 1999;63;117-128.
  • [19] Ingwersen J, Schwarz U, Stange CF, Ju X, Streck T. Shortcomings in the commercialized barometric process separation measuring system. Soil Biol Biochem. 2008;72(1):135-142. DOI: 10.2136/sssaj2007.0092.
  • [20] Butterly CR, Marschner P, McNeill AM, Baldock JA. Rewetting CO2 pulses in Australian agricultural soils and the influence of soil properties. Biol Fert Soils. 2010;46(7):739-753. DOI: 10.1007/s00374-010-0481-9.
  • [21] Breuer L, Kiese R, Butterbach-Bahl K. Temperature and moisture effects on nitrification rates in tropical rain-forest soils. Soil Sci Soc Am J. 2002;66:834-844.
  • [22] Muhr J, Franke J, Borken W. Drying-rewetting events reduce C and N losses from a Norway spruce forest floor. Soil Biol Biochem. 2010;42(8):1303-1312. DOI: 10.1016/j.soilbio.2010.03.024.
  • [23] Chen ST, Huang Y. Determination of respiration, gross nitrification and denitrification in soil profile using BaPS system. J Environ Sci-China. 2006;18(5):937-943. DOI: 10.1016/s1001-0742(06)60018-1.
  • [24] Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM. Controls on soil respiration in semiarid soils. Soil Biol and Biochem. 2004;36(6):945-951. DOI: 10.1016/j.soilbio.2004.02.013.
  • [25] Chowdhury N, Marschner P, Burns RG. Soil microbial activity and community composition: Impact of changes in matric and osmotic potential. Soil Biol Biochem. 2011;43(6):1229-1236. DOI: 10.1016/j.soilbio.2011.02.012.
  • [26] Wichern J, Wichern F, Joergensen RG. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma. 2006;137(1-2):100-108. DOI: 10.1016/j.geoderma.2006.08.001.
  • [27] Rousk J, Elyaagubi FK, Jones DL, Godbold DL. Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biol Biochem. 2011;43(9):1881-1887. DOI: 10.1016/j.soilbio.2011.05.007.
  • [28] Wong VNL, Dalal RC, Greene RSB. Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fert Soils. 2008;44(7):943-953. DOI: 10.1007/s00374-008-0279-1.
  • [29] Kufelnicki A, Jaciubek-Rosinska J. Detection of nitrate(no2-) ions produced in disproportionation of nitrogen(ii) oxide in aqueous solution. Ecol Chem Eng S. 2012;19(1):39-46. DOI: 10.2478/v10216-011-0004-0.
  • [30] Weisshaupt P, Naumann A, Pritzkow W, Noll M. Nitrogen uptake of Hypholoma fasciculare and coexisting bacteria. Mycol Progr. 2013;12(2):283-290. DOI: 10.1007/s11557-012-0834-x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f2139a9-811f-4f3e-9b60-8376dfa4bca8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.