PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Problemy w technologii druku 3D kompozytów cementowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Druk 3D kompozytów cementowych to nowa technologia, która w ostatnich latach rozwija się bardzo szybko. Artykuł porusza główne wady i zalety technologii druku 3D kompozytów cementowych wraz z oceną możliwości jej zastosowania w praktyce.
EN
3D printing of cement composites is a new technology that has developed rapidly in recent years. The paper discusses the main advantages and disadvantages of the 3D printing technology of cement composites, including assessment of its applicability in practice.
Rocznik
Tom
Strony
56--59
Opis fizyczny
Bibliogr. 32 poz., il.
Twórcy
  • Wydział Budownictwa i Inżynierii Środowiska, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
  • Wydział Budownictwa i Inżynierii Środowiska, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
Bibliografia
  • 1. Wangler T., Roussel N., Bos F.P., Salet T.A.M., Flatt R.J. Digital Concrete: A Review. Cement and Concrete Research 2019;123:105780. https://doi.org/10.1016/j.cemconres.2019.105780.
  • 2. Nguyen-Van V., Panda B., Zhang G., Nguyen-Xuan H., Tran P. Digital design computing and modelling for 3-D concrete printing. Automation in Construction 2021;123(4):103529. https://doi.org/10.1016/j.autcon.2020.103529.
  • 3. Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A road-map for research. Cement and Concrete Research 2018;112:37-49. https://doi.org/10.1016/j.cemconres.2018.05.006.
  • 4. Pegna J. Exploratory investigation of solid freeform construction. Automation in Construction 1997;5(5):427-37. https://doi.org/10.1016/S0926-5805(96)00166-5.
  • 5. Khoshnevis B. Automated construction by contour crafting-related robotics and information technologies. Automation in Construction 2004;13(1):5-19. https://doi.org/10.1016/j.autcon.2003.08.012.
  • 6. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance. Materials and Structures 2012;45:1221-32.
  • 7. Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F. et al. Hardened properties of high-performance printing concrete. Cement and Concrete Research 2012;42(3):558-66. https://doi.org/10.1016/j.cemconres.2011.12.003.
  • 8. Perrot A., Rangeard D., Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct 2016;49(4):1213-20. https://doi.org/10.1617/s11527-015-0571-0.
  • 9. Minnesota Man 3D Prints a Real Castle - On to Printing a Full Size House Next. https://3dprint.com/10723/3d-printed-castle-house/. Data dostępu: 07.08.2018.
  • 10. China: Firm 3D prints 10 full-sized houses in a day. https://www.bbc.com/news/blogs-news-from-else-where-27156775. Data dostępu: 03.10.2018.
  • 11. Skibicki S., Kaszynska M., Federowicz K., Techman M., Zielinski A., Olczyk N. et al. Druk 3D kompozytów betonowych metodą przyrostową - doświadczenia zespołu szczecińskiego. Inżynieria i Budownictwo 2021;77(7):328-33.
  • 12. Cesaretti G., Dini E., Kestelier X.D., Colla V., Pambaguian L. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica 2014;93:430-50. https://doi.org/10.1016/j.actaastro.2013.07.034.
  • 13. Wangler T., Lloret E., Reiter L., Hack N., Gramazio F., Kohler M. et al. Digital Concrete: Opportunities and Challenges. RILEM Letters 2016;1:67-75.
  • 14. Bos F., Wolfs R., Ahmed Z., Salet T. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping 2016;11(3):209-25. https://doi.org/10.1080/17452759.2016.1209867.
  • 15. Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials 2017;145:639-47. https://doi.org/10.1016/j.conbuildmat.2017.04.015.
  • 16. Kruger J., Zeranka S., van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Construction and Building Materials 2019;224:372-86. https://doi.org/10.1016/j.conbuildmat.2019.07.078.
  • 17. Arunothayan A.R., Nematollahi B., Ranade R., Bong S.H., Sanjayan J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials 2020;257(3):119546. https://doi.org/10.1016/j.conbuildmat.2020.119546.
  • 18. Chougan M., Ghaffar S.H., Sikora P., Chung S.-Y., Rucinska T., Stephan D et al. Investigation of additive incorporation on rheological, microstructural and mechanical properties of 3D printable alkali-activated materials. Materials & Design 2021;202:109574. https://doi.org/10.1016/j.matdes.2021.109574.
  • 19. Roussel N. Rheological requirements for printable concretes. Cement and Concrete Research 2018;112:76-85. https://doi.org/10.1016/j.cemconres.2018.04.005.
  • 20. Skibicki S., Jakubowska P., Kaszyńska M., Sibera D., Cendrowski K., Hoffmann M. Early-Age Mechanical Properties of 3D-Printed Mortar with Spent Garnet. Materials (Basel) 2021;15(1). https://doi.org/10.3390/ma15010100.
  • 21. Panda B., Noor Mohamed N.A., Paul S.C., Bhagath Singh G.V.P., Tan M.J., Šavija B. The Effect of Material Fresh Properties and Process Parameters on Buildability and Interlayer Adhesion of 3D Printed Concrete. Materials 2019;12(13):2149. https://doi.org/10.3390/ma12132149.
  • 22. Marchment T., Sanjayan J.G., Nematollahi B., Xia M. Interlayer Strength of 3D Printed Concrete. In: Sanjayan J., Nazari A., Nematollahi B., editors. 3D Concrete Printing Technology. Elsevier; 2019, p. 241-264.
  • 23. Zareiyan B., Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Automation in Construction 2017;83:212-21. https://doi.org/10.1016/j.autcon.2017.08.019.
  • 24. WinSun http://www.winsun3d.com/En/About/ (data dostepu: 03.04.2019).
  • 25. German Innovation Award goes to first 3D-printed house, https://www.heidelbergcement.com/en/pr-18-05-2021, data dostępu: 15.04.2022.
  • 26. Kaszynska M., Hoffmann M., Skibicki S., Zielinski A., Techman M., Olczyk N. et al. Evaluation of suitability for 3D printing of high performance concretes. MATEC Web Conf. 2018;163:1002. https://doi.org/10.1051/matecconf/201816301002.
  • 27. Hoffmann M., Skibicki S., Pankratow P., Zieliński A., Pajor M., Techman M. Automation in the Construction of a 3D-Printed Concrete Wall with the Use of a Lintel Gripper. Materials 2020;13(8):1800. https://doi.org/10.3390/ma13081800.
  • 28. Kaszyńska M., Skibicki S., Hoffmann M. 3D Concrete Printing for Sustainable Construction. Energies 2020;13(23):6351. https://doi.org/10.3390/en13236351.
  • 29. Paul S.C., van Zijl G.P.A.G., Tan M.J., Gibson I., Campbell R.I. A review of 3D concrete printing systems and materials properties: Current status and future research prospects. Rapid Prototyping Journal 2018;23(4):0. https://doi.org/10.1108/RPJ-09-2016-0154.
  • 30. Jha K.N. Formwork for Concrete Structures. New Delhi: Tata McGraw Hill Education Private Limited; 2012.
  • 31. Hager I., Golonka A., Putanowicz R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Engineering 2016;151:292-9. https://doi.org/10.1016/j.proeng.2016.07.357.
  • 32. Diggs-McGee B.N., Kreiger E.L., Kreiger M.A., Case M.P. Print time vs. elapsed time: A temporal analysis of a continuous printing operation for additive constructed concrete. Additive Manufacturing 2019;28:205-14. https://doi.org/10.1016/j.addma.2019.04.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f1f9355-201a-4399-989b-42cb37056484
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.