PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wearable sensor for biopotential measurements of patients' health monitoring

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Mobilny czujnik do biopotencjalnych pomiarów monitorowania zdrowia pacjentów
Języki publikacji
EN
Abstrakty
EN
The article presents the concept and prototype of a sensor network for biopotential measurements for long-term and remote tracking of vital signs of patients or athletes. Portable monitoring solutions consist of two basic elements: sensors and a data collection device. In this work, we propose a new type of dry textile electrodes to detect physiological signals that can be an alternative to gelled electrodes. Preliminary ECG measurement results show that after further improvements they can be good candidates for use in intelligent clothing for real applications.
PL
Artykuł przedstawia koncepcję i prototyp sieci czujników do pomiarów biopotencjałów do długoterminowego i zdalnego śledzenie parametrów życiowych pacjentów lub sportowców. Przenośne rozwiązania monitorujące składają się z dwóch podstawowych elementów: czujników i urządzenia do gromadzenia danych. W tej pracy proponujemy nowy rodzaj suchych elektrod tekstylnych do wykrywania sygnałów fizjologicznych, które mogą stanowić alternatywę dla elektrod żelowanych. Wstępne wyniki pomiarów EKG pokazują, że po dalszych ulepszeniach mogą być dobrymi kandydatami do zastosowania w inteligentnej odzieży do rzeczywistych zastosowań.
Słowa kluczowe
Rocznik
Strony
99--102
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
  • Research & Development Centre Netrix S.A.
Bibliografia
  • [1] Rymarczyk T., Stanikowski A., Nita P., Wearable sensor array for biopotential measurements, 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019, 2019, 184-187
  • [2] Searle A. and Kirkup L., A direct comparison of wet, dry and insulating bioelectric recording electrodes, Physiological Measurement, vol. 21, no. 2, pp. 271–283, 2000.
  • [3] Baek J.-Y., An J.-H., Choi J.-M., Park K.-S., and Lee S.-H., Flexible polymeric dry electrodes for the long-term monitoring of ECG, Sensors and Actuators A: Physical, vol. 143, no. 2, pp. 423 – 429, 2008.
  • [4] Bihar E., Roberts T., Saadaoui M., Herv T., Graaf J. B. D., and Malliaras G. G., Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography, Advanced Healthcare Materials, vol. 6, pp. 1–4, 2017.
  • [5] Yapici M. K., Alkhidir T., Samad Y. A., and Liao K., Grapheneclad textile electrodes for electrocardiogram monitoring, Sensors and Actuators B: Chemical, vol. 221, pp. 1469 – 1474, 2015. 102 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 9/2020
  • [6] Lou C., Li R., Li Z., Liang T., Wei Z., Run M., Yan X., and Liu X., Flexible graphene electrodes for prolonged dynamic ECG monitoring, Sensors, vol. 16, pp. 1833–1845, 2016.
  • [7] Celik N., Manivannan N., Strudwick A. and Balachandran W., Graphene-enabled electrodes for electrocardiogram monitoring, Nanomaterials, vol. 6, no. 9, 2016. [Online]. Available: https://www.mdpi.com/2079-4991/6/9/156
  • [8] Ren L., Xu S., Gao J., Lin Z., Chen Z., Liu B., Liang L., and Jiang L., Fabrication of flexible microneedle array electrodes for wearable bio-signal recording, Sensors, vol. 18, pp. 1191– 1202, 2018.
  • [9] Haghdoost F., Mottaghitalab V., and Haghi A. K., Comfortable textile-based electrode for wearable electrocardiogram, Sensor Review, vol. 35, no. 1, pp. 20–29, 2015.
  • [10] Beckmann L., Neuhaus C., Medrano G., Jungbecker N., Walter M., Gries T., and Leonhardt S., Characterization of textile electrodes and conductors using standardized measurement setups, Physiological Measurement, vol. 31, no. 2, pp. 233– 247, jan 2010.
  • [11] Paradiso R., Loriga G., and Taccini N., A wearable health care system based on knitted integrated sensors, IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 3, pp. 337–344, 2005.
  • [12] Yokus M. A. and Jur J. S., Fabric-based wearable dry electrodes for body surface biopotential recording, IEEE Transactions on Biomedical Engineering, vol. 63, no. 2, pp. 423–430, 2016.
  • [13] Dušek J., Hladký D., Mikulka J., Electrical Impedance Tomography Methods and Algorithms Processed with a GPU, In PIERS Proceedings, 2017, pp. 1710-1714.
  • [14] Goetzke-Pala A., Hoła A., Sadowski Ł., A non-destructive method of the evaluation of the moisture in saline brick walls using artificial neural networks. Archives of Civil and Mechanical Engineering, vol. 18, no 4, 2018, pp. 1729-1742.
  • [15] Grudzien K., Romanowski A., Chaniecki Z., Niedostatkiewicz M., Sankowski D., Description of the silo flow and bulk solid pulsation detection using ECT, Flow Measurement and Instrumentation, 21 (2010), No. 3, 198-206.
  • [16] Krawczyk A., Korzeniewska E., Łada-Tondyra E., Magnetophosphenes – History and contemporary implications, Przeglad Elektrotechniczny, 94 (2018), No 1, 61-64.
  • [17] Kowalska A., Banasiak R., Romanowski A., Sankowski D., Article 3D-Printed Multilayer Sensor Structure for Electrical Capacitance Tomography, 19 (2019), Sensors, 3416
  • [18] Kryszyn J., Smolik W., Toolbox for 3d modelling and image reconstruction in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 137-145.
  • [19] Majchrowicz M., Kapusta P., Jackowska-Strumiłło L., Sankowski D., Acceleration of image reconstruction process in the electrical capacitance tomography 3d in heterogeneous, multi-gpu system, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 37-41.
  • [20] Mosorov V., Grudzień K., Sankowski D., Flow velocity measurement methods using electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ), 7 (2017), No.1 ,30-36
  • [21] Romanowski A., Contextual Processing of Electrical Capacitance Tomography Measurement Data for Temporal Modeling of Pneumatic Conveying Process, 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, 2018, 283-286.
  • [22] Rymarczyk T, Kłosowski G. Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21 (2019); No. 2, 261–267
  • [23] Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic Regression for Machine Learning in Process Tomography, Sensors, 19 (2019), 3400.
  • [24] Rymarczyk T., Characterization of the shape of unknown objects by inverse numerical methods, Przegląd Elektrotechniczny, 88 (2012), No 7b, 138-140
  • [25] Rymarczyk T., Adamkiewicz P., Polakowski K., Sikora J., Effective ultrasound and radio tomography imaging algorithm for two-dimensional problems, Przegląd Elektrotechniczny, 94 (2018), No 6, 62-69
  • [26] Rymarczyk T., Kłosowski G., Kozłowski E., Tchórzewski P., Comparison of Selected Machine Learning Algorithms for Industrial Electrical Tomography, Sensors, 19 (2019), No. 7, 1521
  • [27] Smolik W., Kryszyn J., Olszewski T., Szabatin R., Methods of small capacitance measurement in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 105-110.
  • [28] Szczęsny A., Korzeniewska E., Selection of the method for the earthing resistance measurement, Przegląd Elektrotechniczny, 94 (2018), No. 12, 178-181.
  • [29] Valis D., Mazurkiewicz D., Application of selected Levy processes for degradation modelling of long range mine belt using real-time data, Archives of Civil and Mechanical Engineering, 18 (2018), No. 4, 1430-1440.
  • [30] Ziolkowski M., Gratkowski S., and Zywica A. R., Analytical and numerical models of the magnetoacoustic tomography with magnetic induction, COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 37 (2018), No. 2, 538–548.
  • [31] Wajman R., Fiderek P., Fidos H., Sankowski D., Banasiak R., Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination, Measurement Science and Technology, 24 (2013), No. 6, 065302.
  • [32] Medrano G., Ubl A., Zimmermann N., Gries T., and Leonhardt S., Skin electrode impedance of textile electrodes for bioimpedance spectroscopy, in 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, H. Scharfetter and R. Merwa, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 260–263.
  • [33] Banaszczyk J., Mey G. De, Schwarz A., and Langenhove L. Van, Current distribution modelling in electroconductive textiles, in 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems, June 2007, pp. 418–423.
  • [34] Li L., Au W. M., Wan K. M., Wan S. H., Chung W. Y., and Wong K. S., A resistive network model for conductive knitting stitches, Textile Research Journal, 80 (2010), No. 10, 935–947.
  • [35] Comert, M. Honkala, and J. Hyttinen, Effect of pressure and padding on motion artifact of textile electrode, ,BioMedical Engineering OnLine, vol. 12, no. 1, p. 26, Apr 2013. [Online]. Available: https://doi.org/10.1186/1475-925X-12-26
  • [36] Chen B., Abascal J., Soleimani M., Electrical Resistance Tomography for Visualization of Moving Objects Using a Spatiotemporal Total Variation Regularization Algorithm, 18 (2018), Sensors 2018, 1704
  • [37] Kozłowski E., Mazurkiewicz D., Żabiński T., Prucnal S., Sęp J., Assessment model of cutting tool condition for real-time supervision system, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21 (2019); No 4, 679–685
  • [38] Li X, Li J, He D, Qu Y. Gear pitting fault diagnosis using raw acoustic emission signal based on deep learning. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21 (2019), No. 3, 403–410
  • [39] Rymarczyk T., Szumowski K., Adamkiewicz P., Tchórzewski P., Sikora J., Moisture Wall Inspection Using Electrical Tomography Measurements, Przegląd Elektrotechniczny, 94 (2018), No 94, 97-100
  • [40] Vališ D, Hasilová K., Forbelská M, Vintr Z, Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data, Measurement 149 (2020), 107026
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f1f63b7-9064-4276-b92a-dff451881a6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.