Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recently a new type of autonomous underwater vehicle uses artificial fins to imitate the movements of marine animals, e.g. fish. These vehicles are biomimetic and their driving system is an undulating propulsion. There are two main methods of reproducing undulating motion. The first method uses a flexible tail fin, which is connected to a rigid hull by a movable axis. The second method is based on the synchronised operation of several mechanical joints to imitate the tail movement that can be observed among real marine animals such as fish. This paper will examine the first method of reproducing tail fin movement. The goal of the research presented in the paper is to identify the parameters of the one-piece flexible fin kinematics model. The model needs further analysis, e.g. using it with Computational Fluid Dynamics (CFD) in order to select the most suitable prototype for a Biomimetic Underwater Vehicle (BUV). The background of the work is explained in the first section of the paper and the kinematic model for the flexible fin is described in the next section. The following section is entitled Materials and Methods, and includes a description of a laboratory test of a water tunnel, a description of a Vision Algorithm (VA)which was used to determine the positions of the fin, and a Genetic Algorithm (GA) which was used to find the parameters of the kinematic fin. In the next section, the results of the research are presented and discussed. At the end of the paper, the summary including main conclusions and a schedule of the future research is inserted.
Czasopismo
Rocznik
Tom
Strony
39--47
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Polish Naval Academy, Smidowicza 69, 81127 Gdynia, Poland
autor
- Polish Naval Academy, Smidowicza 69, 81127 Gdynia, Poland
autor
- Polish Naval Academy, Smidowicza 69, 81127 Gdynia, Poland
Bibliografia
- 1. Chen Z., Shatara S., Tan X. (2010): Modelling of biomimetic fish propeller by an ionic polymer-metal caudal fin. IEEE/ASME Transactions on Mechatronics, Vol. 15(3), 448-459.
- 2. Graaf V. (2018): Final report Biomimetic Propulsion.
- 3. Goldberg D. E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing, Boston.
- 4. Hożyń S., Żak B. (2015): Moving object detection, localization and tracking using stereo vison system. Solid State Phenomena, Vol. 236, 134-144.
- 5. Hożyń S., Żak B. (2017): Local image features matching for real-time seabed tracking applications. Journal of Marine Engineering and Technology, Vol. 16, 273-282.
- 6. Koca G. O., Bal C., Korkmaz D. (2018): Three-dimensional modeling of a robotic fish based on real carplLocomotion. Applied Sciences, Vol. 8, 180.
- 7. Korkmaz D., Budak U., Bal C. (2012): Modeling and implementation of a biomimetic robotic fish. IEEE Conference, doi: 10.1109/SPEEDAM.2012.6264510
- 8. Krishnadas A., Ravichandran S., Rajagopal P. (2018): Analysis of biomimetic cadual fin shapes for optimal propulsive efficiency. Ocean Engineering, Vol. 153, 132-142.
- 9. Lighthill M. J. (1960): Note on the swimming of slender fish. Journal of Fluid Mechanics, Vol. 9, 305-317.
- 10. Liu J., Hu. H. (2010): Biological inspiration: From carangiform fish to multi-joint robotic fish. Journal of Bionic Engineering, Vol. 7, 35-48.
- 11. Lou B., Ni Y. Mao M., Wang P., Cong Y. (2017): Optimization of the kinematic model for niomimetic robotic dish with rigid headshaking sitigation. Robotics, Vol. 6, 30, doi:10.3390/robotics6040030.
- 12. Malec M., Morawski M., Szymak P., Trzmiel A. (2013): Analysis of parameters of traveling wave impact on the speed of biomimetic underwater vehicle. Solid State Phenomena, Vol. 210, 273-279.
- 13. Mathworks (2018): MATLAB documentation, https://www.mathworks.com/help/gads/how-the-genetic-algorithmworks.html.
- 14. Morawski M., Słota A., Zając J., Malec M., Krupa K. (2017): Hardware and low-level control of biomimetic underwater vehicle designed to perform ISR tasks. Journal of Marine Engineering & Technology, Vol. 16, 227-237.
- 15. Piskur P., Szymak P. (2017): Algorithms for passive detection of moving vessels in marine environment. Journal of Marine Engineering & Technology, Vol. 16, 377-385.
- 16. Shadwick R., Lauder G. (2006): Fish Physiology: Fish Biomechanics, Vol. 23. Academic Press.
- 17. Szymak P., Praczyk T., Naus K., Szturomski B. (2016): Research on biomimetic underwater vehicles for underwater ISR. Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VII, 2016, doi: 10.1117/12.2225587.
- 18. Szymak P., Przybylski M. (2018): Thrust measurement of biomimetic underwater vehicle with undulating propulsion. Scientific Journal of Polish Naval Academy, Vol. 213(2), 69-82.
- 19. Taylor G. K., Nudds R. L., Thomas A. L. (2003):. Flying and swimming animals cruise at a Strouhal number tuned for high power efciency. Nature, Vol. 425, 707-710.
- 20. Tey W., Sidik N. (2015): Comparison of swimming performance between two-dimensional carangiform and anguilliform locomotor. Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 11(1), 1-10.
- 21. Tytell E., Hsu C., Fausi L. (2014): The role of mechanical resonance in the neural control of swimming in fishes. Zoology (Jena), Vol. 117(1), 48-56.
- 22. Tytell E., Lu. M. (2016): Role of body stiffness in undulatory swimming: Insights from robotic and computational models. Physical Review Fluids, Vol. 1.
- 23. Wang J., Tan X. (2015): Averaging of tail-actuated robotic fish dynamics through force and moment scaling. IEEE Transactions on Robotics, Vol. 31(4), 906-917.
- 24. Weise T. (2009): Global Optimization Algorithms – Theory and Application, Retrieved: http://www.it-weise.de/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f1bb5d9-aac3-4f16-93b7-590787355511