PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of CO2 desorption process coupled with phase transformation and heat transfer in CCS installation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the research aimed at developing the computational fluid dynamics (CFD) model of amine based carbon dioxide capture process in post combustion capture (PCC) technology. Numerical model of absorber column (being the first stage of PCC cycle) including complex hydrodynamics, heat transfer and absorption reaction with the use of monoethanolamine (MEA) has already been developed and described in detail in [1, 2]. This paper focuses on the second stage of PCC cycle i.e. desorber (stripper) column. Eulerian multiphase model was adopted to resolve two-phase countercurrent gas-liquid flow in porous region with desorption reaction, multiphase heat transfer and evaporation/condensation phenomena. The preliminary calculations were performed on simplified geometry of stripper column in order to reduce the computational time required. Results have shown a physically correct behaviour, proving its relevance and its usefulness to practical applications.
Słowa kluczowe
Rocznik
Strony
354--361
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Institute of Thermal Machinery, Częstochowa University of Technology, Poland
autor
  • Institute of Thermal Machinery, Częstochowa University of Technology, Poland
autor
  • Institute of Thermal Machinery, Częstochowa University of Technology, Poland
Bibliografia
  • [1] P. Niegodajew, D. Asendrych, Modelowanie przepływu przeciwprądowego gaz–ciecz w złożu porowatym, Vol. 14 of Modelowanie Inżynierskie, 2012.
  • [2] D. Asendrych, P. Niegodajew, S. Drobniak, Cfd modelling of co2 capture, Chemical and Process Engineering 34 (2013) 269–282.
  • [3] A. Krótki, L. Więcław-Solny, A. Tatarczuk, A. Wilk, D. Śpiewak, Badania laboratoryjne procesu absorpcji co2 z zastosowaniem 30monoetanoloaminy, Archiwum Spalania 12 (2012) 195–203.
  • [4] P. Moser, S. Schmidt, S. Wallus, T. Ginsberg, G. Sieder, I. Clausen, J. Palacios, T. Storegen, D. Mihailowitsch, Enhancement and long-term testing of optimised post-combustion capture technology-results of the second phase of the testing programme at the niederaussem pilot plant, Energy Procedia 37 (2013) 2377–2388.
  • [5] P. Moser, S. Schmidt, G. Sieder, H. Garcia, T. Storegen, Performance of mea in long-term test at the post-combustion capture pilot plant in niederaussem, Int. J. of Greenhouse Gas Control 5 (2011) 620–627.
  • [6] T. Sonderby, K. Carlsen, P. Fosbol, L. K. G., N. von Solms, A new pilot absorber for co2 capture from flue gases: Measuring and modelling capture with mea solution, International Journal of Greenhouse Gas Control 12 (2013) 18–192.
  • [7] R. Dugas, P. Alix, E. Lemaire, P. Broutin, G. Rochelle, Absorber model for CO2 capture by MEA application to CASTOR pilot results, Energy Procedia, 2008.
  • [8] L. Remiorz, M. Brzęczek, Influence of ccs on efficiency of combined cycle power plants, Rynek Energii 106 (3) (2013) 81–86.
  • [9] S. Jayarathna, B. Lie, C. Morten, M. Melaaen, Development of a dynamic model of a post combustion co2 capture process, Energy Procedia 37 (2013) 1760–1769.
  • [10] J. Milewski, J. Lewandowski, A. Miller, Reducing co2 emissions from a gas turbine power plant by using a molten carbonate fuel cell, CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA 29 (4) (2008) 939–954.
  • [11] H. Ndiritu, K. Kibicho, B. Gathitu, Influence of flow parameters on capture of carbon dioxide gas by a wet scrubber, Journal of Power Technologies 93 (1) (2013) 9–15.
  • [12] C. Alie, Co2 capture with mea: Integrating the absorption process and steam cycle of an existing coal-fired power plant, Master’s thesis, University of Waterloo, Ontario, Canada (2004).
  • [13] A. Kothandaraman, L. Nord, O. Bolland, H. Herzog, G. McRae, Comparison of solvents for post-combustion capture of co2 by chemical absorption, Energy Procedia 1 (2009) 1373–1380.
  • [14] A. Lawal, M. Wang, P. Stephenson, G. Koumpouras, H. Yeung, Dynamic modelling and analysis of post-combustion co2 chemical absorption process for coal-fired power plants, Fuel 89 (2010) 2791–2801.
  • [15] N. Harun, P. Douglas, L. Ricardez-Sandoval, E. Croiset, Dynamic simulation of mea absorption processes for co2 capture from fossil fuel power plant, Energy Procedia 4 (2011) 1478–1485.
  • [16] L. Simon, Y. Elias, G. Puxty, Y. Artanto, K. Hungerbuhler, Rate based modeling and validation of a co2 pilot plant absorption column operating on mea, Chem. Eng. Research and Design 89 (9) (2011) 1684–1692.
  • [17] L. Schiller, Z. Naumann, A drag coeffcient correlation, Ver. Deutsch. Ing., 1935.
  • [18] J. Maćkowiak, Fluid dynamics of packed columns, Springer Heidelberg Dordrecht London New York, 2010.
  • [19] P. Vaidya, E. Kenig, Co2-alkanolamine reaction kinetics: A review of recent studies, Chem. Eng. Technol. 30 (11) (2007) 1467–1474.
  • [20] Z. Sun, M. Fan, M. Argyle, Desorption kinetics of the monoethanolamine/macroporous tio2-based co2 separation process, Energy & Fuels 25 (2011) 2988–2996.
  • [21] Analiza możliwości poboru pary z układu siłowni do zasilania w ciepło instalacji separacji co2, in: Mat. II Seminarium Projektu Strategicznego, Szczyrk, 2011.
  • [22] R. Faiz, M. Al-Marzouqi, Mathematical modelling for the simultaneous absorption of co2 and h2s using mea in hollow fiber membrane contractors, Journal of Membrane Science 324 (2009) 269–278.
  • [23] J. Gaspar, A.-M. Cormos, Dynamic modelling and validation of absorber and desorber columns for post-combustion co2 capture, Comput. Chem. Eng. J. 35 (2010) 2044–2052.
  • [24] P. Mores, N. Scenna, S. Musatti, Post-combustion co2 capture process: Equilibrium stage mathematical model of the chemical absorption of co2 into monoethanolamine (mea) aqueous solution, Chem. Eng. Res. Des. (2010) 1587–1599.
  • [25] F. Ferrara, G. Cali, C. Frau, A. Pettinau, Experimental and numerical assessment of the co2 absorption process in the sotacarbo pilot platform, in: 1st International Conference on Sustainable Fossil Fuels for Future Energy - S4FE, 2009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f18f2d5-c407-4f6e-97fe-f20f2a2b13cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.