
Zeszyty Naukowe WWSI, No. 11, Vol. 8, 2014, pp. 29-39

Algorithms Using List Scheduling and Greedy Strategies
 for Scheduling in the Flowshop with Resource Constraints

Ewa Figielska*

Warsaw School of Computer Science

Abstract

The paper addresses the problem of scheduling in the two-stage flowshop with

parallel unrelated machines and renewable resource constraints. The objective

is minimization of makespan. The problem is NP-hard. Fast heuristic algo-

rithms using list scheduling and greedy strategies are proposed. For evaluation

of the performance of the algorithms computational experiments are performed
on randomly generated test problems, and results are reported.

Keywords – Flowshop, Parallel machines, Resource constraints, Scheduling, Heu-
ristic

1 Introduction

The paper addresses the problem of scheduling in the two-stage flowshop with par-
allel unrelated machines and renewable resource constraints.

A two-stage flowshop with parallel machines (also called a two-stage hybrid
flowshop) is a system which consists of two processing centers (processing stages)
with at least one center having two or more parallel machines. A job in such a system
consists of a sequence of operations. Each operation is performed at one processing

* E-mail: efigielska@poczta.wwsi.edu.pl

 Manuscript received July 28, 2014

29

Ewa Figielska

stage. All jobs pass through the stages in the same technological order. At a stage
with parallel machines a job can be processed on any machine. In the considered
flowshop, the parallel machines are unrelated which means that processing times of
a job are different on different machines. Jobs, during their processing on the ma-
chines, use some additional renewable resources which are available in limited quan-
tities at any time. All required resources are granted to a job before its processing
begins and they are returned by the job after finishing its processing at a stage. Job
resource requirements are arbitrary integer numbers (different for different jobs and
different machines) or are assumed to be of 0-1 type (i.e. a job uses 1 unit of a re-
source or does not use a resource). The objective is to find a feasible schedule with
the minimal makespan (length). The problem is known to be NP-hard.

The problem of scheduling in the two-stage hybrid flowshop with resource con-
straints was solved in our previous works [1,2,3,4] with the use of linear program-
ming and metaheuristics.

Table 1: Machine selection rules

Machine se-

lection rule M#
Description

M1 Random selection.
M2 For a given job choose a machine that becomes free first.
M3 For a given job choose a machine on which this job has

the smallest processing time.
M4 For a given job choose a machine on which this job has

the smallest average resource requirements.

In this paper, we propose algorithms applying list scheduling and greedy strategies,
which promise to perform very fast. First, we create a list of jobs according to
a priority rule based on the Johnson’s rule [5] (the Johnson algorithm provides an
optimal makespan for the classical two-machine flowshop). Next, if the first stage
has one machine, the jobs from the list are executed one by one on this machine. If
stage 1 has parallel unrelated machines, we choose the machines to which successive
jobs from the list are assigned. Each job starts processing on the assigned to it ma-
chine when this machine is free and resource constraints are satisfied. If the parallel
machines are at stage 2, a machine is assigned to a job after finishing its processing
at stage 1. The choice of the machine for a given job is made in a greedy way according
to the one of the machine selection rules presented in Table 1 which promises a short
schedule at the stage with parallel machines.

30

Algorithms Using List Scheduling and Greedy Strategies…

 The remainder of the paper is organized as follows. In the next sections, the al-
gorithms are presented. The results of the computational experiment are reported in
Section 3. Section 4 summarizes the paper.

2 Algorithms

2.1 Algorithms for scheduling in the flowshop with parallel machines
at stage 1 and one machine at stage 2

In this section, we consider the problem of scheduling in a two-stage flowshop with
parallel unrelated machines at the first stage and a single machine at the second stage.
All the jobs are ready for processing at stage 1 at time 0. The jobs during their pro-
cessing use additional renewable resources which are available in limited quantities
at any time. Resource requirements of jobs are arbitrary integer numbers (different
for different jobs and different machines) or are assumed to be of 0-1 type.

The algorithms solving this problem proceed as follows.
1. Create a list of jobs ordered according to the priority rule.
2. For each successive job ݆ from the list:
3. Choose machine ݅ for processing job ݆ at stage 1 according to

a machine selection rule.
4. Start processing job ݆ on machine ݅ as early as possible so that re-

source constraints are satisfied at any moment.
5. For each job the processing of which finished at stage 1, start its pro-

cessing at stage 2 when the second stage machine becomes free.

The priority rule used in the algorithms is based on the Johnson’s rule and oper-

ates as follows. First, it sorts jobs with ݌௝௠௜௡ ≤ .௝௠௜௡݌ ௝ in non-decreasing order ofݏ
Then, it sorts the remaining jobs in non-increasing order of ݏ௝, where ݏ௝ is the pro-

cessing time of job ݆	at stage 2, ݌௝௠௜௡ = min௜ୀଵ,…,௠ -௜௝, where ݉ is the number of ma݌

chines and ݌௜௝	is the processing time of job ݆ on machine ݅ at stage 1. The machine

selection rules used by the algorithms are presented in Table 1.
The algorithms for solving the problem with parallel unrelated machines at stage

1 and one machine at stage 2, implementing rules M1-M4 will be, respectively, re-
ferred to as RM1-RM4.

31

Ewa Figielska

2.2 Algorithms for scheduling in the flowshop with one machine at
stage 1 and parallel machines at stage 2

In this section, we consider the two-stage flowshop with one machine at stage 1 and
parallel unrelated machines at stage 2. Resources available in limited quantities at
any moment are shared among the stages, which means that they can be used at the
same time at different stages. So, if a resource is used at one stage, its quantity avail-
able at the same time at the other stage lessens. Resource requirements of jobs are
assumed to be arbitrary integers.

At stage 2 with parallel machines successive jobs have different ready times
which are equal to their completion times at stage 1. The resource availability at
stage 2 is different in different time intervals between the ready times of the succes-
sive jobs. Therefore, the algorithms developed in this section proceed in
a different way than those presented in the previous section. These algorithms can
be outlined as follows.

1. Create a list of jobs ordered according to the priority rule and execute jobs

from the list one by one on the machine at stage 1.
2. For each successive time interval ݇:
3. Let ܬ௞ be the set of all jobs that are available for processing at stage

2 in time interval ݇ (i.e. jobs that finished their processing at stage
1 before interval ݇ begins) and were not yet executed at stage 2.

4. For each successive job ݆ from the job list, which belongs to set ܬ௞:
5. Choose machine ݅ for processing job ݆ at stage 2 according to

a machine selection rule.
6.

 Start processing job ݆ on machine ݅ in interval ݇ as early as pos-
sible so that resource constraints are satisfied at every moment. If
job ݆ cannot start in interval ݇, remove it from set ܬ௞.

As a priority rule, we use the best priority rule from [4]. It is based on the Johnson’s
rule, but beside jobs processing times, it takes into account also resource require-
ments of jobs. This rule operates as follows. First, it sorts jobs with ݌௝ ≤ ௝௠௜௡ inݏ
non-decreasing order of ݌௝ ⁄ത௝ߙ . Then, it sorts the remaining jobs in non-increasing

order of ݏ௝௠௜௡̅ߚ௝, where: ݌௝ is the processing time of job ݆	at stage 1, ݏ௝௠௜௡ =min௜ୀଵ,…,௠ ത௝ߙ ,is the processing time of job ݆ on machine ݅ at stage 2	௜௝ݏ ௜௝, where ݉ is the number of machines andݏ = ଵ௟ ∑ ௝௥ߙ ௥ܹ⁄௟௥ୀଵ ௝ߚ̅ , = ଵ௟ ∑ ௞௝௥ߚ ௥ܹ⁄௟௥ୀଵ , where {݇ =݅: ௜௝ݏ = ,௜௝௠௜௡ݏ ݅ = 1,… ,݉}, ݈ is the number of resources, ௥ܹ is the availability of

32

Algorithms Using List Scheduling and Greedy Strategies…

resource ߙ ,ݎ௝௥ and ߚ௜௝௥ are the numbers of units of resource ݎ required by job ݆,
respectively, on the machine at stage 1 and on machine ݅ at stage 2.

The algorithms for solving the problem with resources shared among the stages
use rules M1-M4, and will be, respectively, referred to as SM1-SM4.

3 Computational experiments

In this section, the results of a computational experiment are presented.

To evaluate the quality of the heuristic solutions we use values of the percentage
deviation of the heuristic makespan from the lower bound on the optimal makespan:

ߜ = ஼೘ೌೣି௅஻௅஻ × 100% (1)

where ܥ௠௔௫ is the best makespan (maximal completion time) found by the heu-

ristic algorithm, and ܤܮ is the lower bound on the optimal makespan. We use the
lower bounds derived in [2,3,4].

Results are analyzed in terms of the following parameters:
 the number of jobs ݊,
 the number of machines ݉,
 the resource availability ܹ,
 the ranges of job processing times at stage 1, [݌], and at stage 2, [s],
 the ranges of job resource requirements at stage 1, [ߙ], and at stage 2, [ߚ],
 the values of the dominance factor, ߠ (for the problems with parallel ma-

chines at stage 1), which is defined as the ratio of the optimal length of the
schedule at stage 1 to the sum of the job processing times at stage 2 (see
[2]).

The values of ߠ close to 1 indicate that the stages are balanced, which is the most
important case from the practical point of view, but, which, at the same time, is the
most difficult one to solve. If ߠ is less or greater than 1, one of the stages dominates
the other.

3.1 Computational experiments for the problem with parallel machines
at stage 1, one machine at stage 2 and resource requirements of 0-1 type

In this section we present the results of the experiment carried out for the problem
with parallel machines at stage 1 and one machine at stage 2 in the case when
jobs have resource requirements of 0-1 type (i.e. a job uses 1 unit of a resource
or does not use a resource). In the experiment, the data sets from [2] were used.

33

Ewa Figielska

Table 2: Computational results for the problem with parallel machines at stage 1,
one machine at stage 2 and resource requirements of 0-1 type

ߜ [%] CPU
time [s]

A5T ݊ ݉ ܹ [݌] ߠ RM1 RM2 RM3 RM2 ߜ [%] CPU time [s]
40 4 2 [30,60] 0.68 19.5 3.0 0.9 0.008 0.23 1.34
 [50,100] 1.12 72.7 41.5 43.3 0.011 1.59 1.29
 [70,140] 1.55 82.6 46.0 42.7 0.011 1.97 1.26

40 8 4 [50,100] 0.62 18.2 1.8 0.4 0.016 0.12 1.31
 [70,140] 0.86 58.5 19.1 16.8 0.018 0.34 1.28
 [90,180] 1.12 87.1 43.8 40.9 0.017 2.30 1.31
 [110,220] 1.34 104.9 55.5 50.0 0.016 4.73 1.31
 [130,260] 1.59 104.7 54.8 52.1 0.016 3.84 1.30

40 4 4 [30,60] 0.80 56.6 19.7 23.6 0.011 0.21 1.19
 [50,100] 1.36 99.9 48.2 60.5 0.012 1.19 1.20
 [70,140] 1.86 104.4 52.2 61.4 0.011 1.08 1.20

40 8 8 [50,100] 0.77 47.6 10.7 10.3 0.024 0.28 1.26
 [70,140] 1.07 88.2 37.3 37.4 0.024 1.05 1.33
 [90,180] 1.38 109.0 52.2 55.0 0.024 3.23 1.33
 [110,220] 1.78 103.0 49.9 52.7 0.023 2.35 1.28
 [130,260] 2.02 103.2 50.4 53.4 0.023 2.20 1.32

80 4 2 [30,60] 0.66 16.2 1.2 0.3 0.059 0.09 2.44
 [50,100] 1.08 80.6 45.6 41.9 0.059 0.83 2.49
 [70,140] 1.52 80.0 47.5 44.2 0.048 0.93 2.53

80 8 4 [50,100] 0.56 13.2 0.6 0.1 0.088 0.07 2.62
 [70,140] 0.79 55.1 20.2 12.5 0.089 0.12 2.64
 [90,180] 1.03 91.9 47.1 43.5 0.090 0.69 2.61
 [110,220] 1.27 99.8 55.2 49.4 0.090 2.30 2.62
 [130,260] 1.54 99.6 54.2 45.0 0.093 1.96 2.59

80 4 4 [30,60] 0.74 58.5 18.1 23.5 0.071 0.13 2.50
 [50,100] 1.23 117.6 61.0 75.7 0.072 0.59 2.54
 [70,140] 1.74 114.8 60.5 71.9 0.070 0.51 2.59

80 8 8 [50,100] 0.68 45.8 7.9 7.6 0.138 0.11 2.68
 [70,140] 0.97 99.6 43.2 45.4 0.137 0.45 2.66
 [90,180] 1.25 111.4 58.3 62.4 0.137 1.70 2.63
 [110,220] 1.50 125.3 59.9 62.8 0.135 1.71 2.63
 [130,260] 1.83 121.9 60.0 61.3 0.144 1.27 2.65
 Average 81.0 38.3 39.0 0.056 1.26 1.95

The results are shown in Table 2.
 The first 5 columns of the table indicate values of the problem parameters: ݊, ݉, ܹ, [݌] and ߠ. The range [s] was set at [10,20]. In columns 6-8 of the table,
the average (over 50 problem instances) deviations ߜ obtained by algorithms

34

Algorithms Using List Scheduling and Greedy Strategies…

RM1-RM3 are presented. Column 9 shows the computation times for RM2 (com-
putation times of the other algorithms are almost the same). The last two columns
show deviations ߜ and computation times for algorithm A5T from our previous
work [2], which uses linear programming and a tabu search algorithm.

Table 3: Computational results for the problem with parallel machines at stage 1,
one machine at stage 2 and arbitrary resource requirements of jobs

ߜ [%] CPU time
[s]

 HS

n ݉ [݌] ߠ RM1 RM2 RM3 RM4 RM3 ߜ [%] CPU time
[s]

20 2 [1,100] 0.37 4.6 2.4 0.0 2.4 0.001 0.02 1.85
 [1,200] 0.73 64.0 45.5 15.2 37.5 0.001 0.20 1.82
 [1,400] 1.52 130.4 101.0 54.5 106.9 0.001 1.55 1.84
 [1,600] 2.30 134.7 105.4 53.5 97.8 0.001 1.01 1.83

 4 [1,200] 0.35 54.0 42.2 0.8 7.3 0.002 0.02 2.69
 [1,400] 0.66 220.6 173.0 26.7 80.6 0.002 0.58 2.74
 [1,600] 1.02 335.8 289.6 69.5 149.3 0.002 4.06 2.74
 [1,800] 1.17 384.8 348.3 87.3 168.5 0.002 5.55 2.83
 [1,1000] 1.71 377.5 320.7 83.0 174.8 0.002 3.87 2.82
 [1,1200] 2.05 369.2 343.4 94.4 170.5 0.002 3.75 2.83
 [1,1400] 2.20 399.5 333.7 88.5 196.7 0.002 2.66 2.92

60 2 [1,100] 0.37 1.8 1.1 0.0 0.9 0.022 0.01 11.19
 [1,200] 0.72 71.3 50.0 15.7 42.5 0.020 0.00 11
 [1,400] 1.43 140.6 113.0 60.1 98.5 0.020 0.34 11.42
 [1,600] 2.14 141.3 114.2 62.1 100.1 0.020 0.24 11.6

 4 [1,200] 0.30 55.8 39.2 0.0 2.0 0.023 0.00 13.53
 [1,400] 0.62 207.9 174.2 22.0 59.6 0.024 0.01 14.29
 [1,600] 0.95 341.1 295.9 79.6 132.9 0.023 0.35 14.25
 [1,800] 1.22 405.8 352.9 97.3 160.6 0.024 1.46 14.15
 [1,1000] 1.50 420.3 362.9 101.1 169.0 0.023 1.02 13.89
 [1,1200] 1.89 389.7 337.1 96.7 165.0 0.025 0.67 14.14
 [1,1400] 2.19 402.6 350.0 100.6 157.5 0.025 0.55 13.59

 Average 229.7 195.3 54.9 103.7 0.012 1.27 7.73

In Table 2, we can see that the algorithms using machine selection rules M2 and
M3 (let us recall that, for a given job, M2 chooses the first free machine, M3
chooses the machine with the smallest processing time of this jobs), provide
about two times better results than the algorithms with rule M1 (which chooses

35

Ewa Figielska

the machines randomly). The smallest deviations	ߜ are obtained when dominance
factor ߠ is less than 1 (i.e. when stage 2 dominates stage 1). The values of
 .is close to 1 (i.e. stages become balanced) ߠ until ,ߠ increase with increasing ߜ
Further increase in ߠ do not deteriorate the solutions. The number of jobs and
machines does not seem to affect the quality of the solutions. The average devi-
ations ߜ obtained by algorithms RM2 and RM3 are slightly less than 40%. The
computation times do not exceed 0.15 seconds.

 Algorithm A5T provided the average deviations ߜ equal to 1.26% using from
about 1 to about 3 seconds of computation time [2].

The computations were carried out on a PC with Celeron 2.4GHz processor
and 512GB RAM.

3.2 Computational experiments for the problem with parallel machines
at stage 1, one machine at stage 2 and arbitrary resource requirements

In this section, the computational experiment was carried out for the problem with
parallel machines at stage 1 and one machine at stage 2 in the case when resource
requirements of jobs are arbitrary integers taken from some interval. In the experi-
ment, the data sets from [3] were used.

The results of the experiment are presented in Table 3.The first 4 columns of the
table show the values of the problem parameters: ݊, ݉, [݌] and ߠ. The values of the
remaining parameters are as follows: [s] = [1,100], ܹ =10, and [ߙ] = [1,10]. Columns
5-8 of the table contain the average (over 50 problem instances) values of deviations ߜ obtained by algorithms RM1-RM4. The computation times (of RM3 as a repre-
sentative of all the algorithms) are indicated in column 9. The last 2 columns contain
the results obtained in [3] by algorithm HS using column generation and simulated
annealing procedures.

In Table 3, we can see that the algorithm applying rule M3 (favoring a machine
with the smallest processing time for a given job) significantly outperforms the other
algorithms. It provides the solutions about 4 times better than RM1 and RM2, and
about 2 times better than RM4. The smallest deviations	ߜ are obtained in the cases
when the first stage schedules are about 3 times shorter than those at the second
stage. For the most important problems with ߠ ≈ 1, deviations ߜ become greater
and almost do not change with the further increase in the values of ߠ, i.e. for the
problems where the first stage is a dominant one. The deviations ߜ increase with
increasing the number of machines. The number of jobs seems not to influence the
performance the algorithms. The average deviation ߜ obtained by RM3 is equal to

36

Algorithms Using List Scheduling and Greedy Strategies…

about 55%. The computation times of algorithms RM1-RM4 did not exceed 0.025
seconds for all tested problem instances.

 Algorithm HS provided solution with average ߜ = 1.27% using from about 2
about 14 seconds [3].

The computations were performed on a PC with Celeron 1.3GHz processor and
2GB RAM.

3.3 Computational experiments for the problem with one machine at
stage 1, parallel machines at stage 2 and resources shared among the
stages

In this section, the computational experiment was conducted for the problem with
one machine at stage 1 and parallel machines at stage 2, where resources are shared
among the stages. The data sets from [4] were used.

The results of the experiment are presented in Table 4. The first 3 columns of the
table indicate the values of the problem parameters: ܹ, ݊ and ݉. The values of the
remaining parameters are as follows: [p] = [1,100], [s] = [1,100݉], [ߙ] = [1,10] and
-In columns 4-7 of table the average (over 10 problem instances) per .[1,10] = [ߚ]
centage deviations	ߜ produced by the algorithms are shown. Column 8 contains the
computation times. The last two columns present deviations ߜ and computation times
for the column generation based algorithm, denoted as A5, proposed in [4].

In Table 4, we can see that algorithm SM3 outperforms the other algorithms. It
provides more than 3 times better results than algorithms SM1 and about 2 times
better results than algorithms SM2 and SM4.
 The performance of the algorithms considerably improves when resource con-
straints are weak (ܹ = 14) in comparison with the case when resource constraints
are strong (ܹ = 10). If the number of machines grows, the performance of the al-
gorithms deteriorates. The increase in the number of jobs slightly improves the re-
sults. On the average, deviations ߜ obtained by algorithm SM3 are equal to about
47% and 28% for problems with, respectively strong and weak resource constraints.

The computation times of algorithm SM3 did not exceed 0.81 seconds. They be-
come smaller with weakening the resource constraints. The average computation
times were equal to 0.27 and 0.18 seconds for problems with, respectively, strong
and weak resource constraints.

Algorithm A5 used on the average 26 and 9 seconds of the computation time if
resource constraints were, respectively, strong and weak, and produced the average
deviations ߜ equal to 0.8% and 0.16%, respectively, for ܹ = 10 and ܹ = 14.

37

Ewa Figielska

The computations were carried out on the PC with Celeron 1.3GHz processor and
2GB RAM.

Table 4: Computational results for the problem with one machine at stage 1, parallel
machines at stage 2 and resources shared among the stages

ߜ [%] CPU time [s] A5 ܹ ݊ ݉ SM1 SM2 SM3 SM4 SM3 ߜ [%] CPU time [s]
10 20 2 64.3 54.8 40.6 60.3 0.008 4.21 1.29
 4 164.5 132.6 58.8 94.9 0.0095 2.25 1.57
 6 232.7 203.2 54.1 121.4 0.0103 0.28 1.57
 40 2 59.7 55.2 40.0 61.1 0.0645 1.00 6.33
 4 123.6 122.8 49.2 83.9 0.0735 0.58 7.51
 6 211.8 200.2 61.8 99.2 0.0843 0.17 7.64
 60 2 56.1 46.6 37.1 48.1 0.2485 0.42 26.29
 4 137.0 104.7 44.2 81.5 0.283 0.10 28.02
 6 220.9 188.6 51.8 98.1 0.3112 0.16 35.53
 80 2 53.8 47.4 32.1 50.8 0.6338 0.24 53.79
 4 121.4 100.4 46.6 77.3 0.7482 0.06 62.55
 6 191.4 162.2 50.2 98.4 0.8057 0.05 77.77

Average 136.4 118.2 47.2 81.3 0.2734 0.79 25.82

14 20 2 40.7 27.5 19.6 42.4 0.0045 0.65 0.86
 4 100.9 93.9 35.9 69.6 0.0062 0.14 0.90
 6 177.9 139.2 35.9 100.5 0.0067 0.28 0.78
 40 2 37.4 28.1 18.5 27.9 0.0397 0.11 2.64
 4 87.0 61.1 27.7 50.5 0.0525 0.20 2.63
 6 162.9 122.8 42.8 98.7 0.0643 0.20 3.44
 60 2 41.2 36.4 18.3 34.4 0.1405 0.01 9.44
 4 88.9 51.0 29.1 50.5 0.1942 0.02 8.71
 6 146.6 107.1 33.9 92.1 0.2185 0.11 9.59
 80 2 18.6 14.8 9.4 20.1 0.3283 0.02 18.50
 4 64.8 48.1 29.2 46.1 0.5528 0.05 22.19
 6 133.2 94.1 29.1 78.7 0.581 0.07 22.41

Average 91.7 68.7 27.5 59.3 0.1824 0.16 8.51

4 Summary

In this paper, we proposed fast algorithms using list scheduling and greedy strategies
for solving the resource constrained scheduling problem in the two-stage hybrid
flowshop in two cases.
38

Algorithms Using List Scheduling and Greedy Strategies…

(1) Parallel unrelated machines and resources with availability limited at any mo-
ment are at the first stage. Moreover job resource requirements are of 0-1 type
or arbitrary integers.

(2) The flowshop has parallel unrelated machines at stage 2. The resources with
availability limited at any moment are shared among the stages. Jobs have
arbitrary resource requirements. In both cases the objective was minimization
of the makespan.

The extensive computational experiment was carried out using 2940 randomly gen-
erated problem instances. To evaluate the performance of the proposed algorithms
the values of percentage deviation ߜ of the heuristic makespan from the lower bound
on the optimal makespan were calculated. The results of the experiment show that
the algorithms used in this paper are fast. The computation time and deviation ߜ of
the best algorithms, on the average over all the instances used in the experiment, are
equal, respectively, to 0.1 seconds and 42.7%.

We compared the results obtained in this paper with the results reported in our
previous works [2,3,4] where the same problems were solved by the algorithms using
linear programming and metaheuristcs. The computation time and deviation ߜ of
those algorithms, on the average over all the instances used in the experiment, are
equal, respectively, to 8.3 seconds and 1.0%.

References

[1] E. Figielska. A new heuristic for scheduling the two-stage flowshop with addi-

tional resources, Computers & Industrial Engineering 54, 750-763, 2008.
[2] E. Figielska. Linear programming & metaheuristic approach for scheduling in

the hybrid flowshop with resource constraints. Control and Cybernetics 40 (4),
1209-1230, 2011.

[3] E. Figielska. A genetic algorithm and a simulated annealing algorithm combined
with column generation technique for solving the problem of scheduling in the
hybrid flowshop with additional resources, Computers &Industrial Engineering
56, 142-151, 2009.

[4] E. Figielska. A heuristic for scheduling in a two-stage hybrid flowshop with
renewable resources shared among the stages, European Journal of Operational
Research 236(2), 433–444, 2014.

[5] S.M. Johnson. Optimal two- and three-stage production schedules with setup
times included, Naval Research Logistics Quarterly 1, 61-68, 1954.

39

