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Abstract 

The paper addresses the problem of scheduling in the two-stage flowshop with 

parallel unrelated machines and renewable resource constraints. The objective 

is minimization of makespan. The problem is NP-hard. Fast heuristic algo-

rithms using list scheduling and greedy strategies are proposed. For evaluation 

of the performance of the algorithms computational experiments are performed 
on randomly generated test problems, and results are reported. 
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1  Introduction 
 

The paper addresses the problem of scheduling in the two-stage flowshop with par-
allel unrelated machines and renewable resource constraints.  

A two-stage flowshop with parallel machines (also called a two-stage hybrid 
flowshop) is a system which consists of two processing centers (processing stages) 
with at least one center having two or more parallel machines. A job in such a system 
consists of a sequence of operations. Each operation is performed at one processing 
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stage. All jobs pass through the stages in the same technological order. At a stage 
with parallel machines a job can be processed on any machine. In the considered 
flowshop, the parallel machines are unrelated which means that processing times of 
a job are different on different machines. Jobs, during their processing on the ma-
chines, use some additional renewable resources which are available in limited quan-
tities at any time. All required resources are granted to a job before its processing 
begins and they are returned by the job after finishing its processing at a stage. Job 
resource requirements are arbitrary integer numbers (different for different jobs and 
different machines) or are assumed to be of 0-1 type (i.e. a job uses 1 unit of a re-
source or does not use a resource). The objective is to find a feasible schedule with 
the minimal makespan (length). The problem is known to be NP-hard.  

The problem of scheduling in the two-stage hybrid flowshop with resource con-
straints was solved in our previous works [1,2,3,4] with the use of linear program-
ming and metaheuristics.  

 
Table 1: Machine selection rules 

 
Machine se-

lection rule M#
Description 

M1 Random selection. 
M2 For a given job choose a machine that becomes free first. 
M3 For a given job choose a machine on which this job has 

the smallest processing time.  
M4 For a given job choose a machine on which this job has 

the smallest average resource requirements. 
 

In this paper, we propose algorithms applying list scheduling and greedy strategies, 
which promise to perform very fast. First, we create a list of jobs according to  
a priority rule based on the Johnson’s rule [5] (the Johnson algorithm provides an 
optimal makespan for the classical two-machine flowshop). Next, if the first stage 
has one machine, the jobs from the list are executed one by one on this machine. If 
stage 1 has parallel unrelated machines, we choose the machines to which successive 
jobs from the list are assigned. Each job starts processing on the assigned to it ma-
chine when this machine is free and resource constraints are satisfied. If the parallel 
machines are at stage 2, a machine is assigned to a job after finishing its processing 
at stage 1. The choice of the machine for a given job is made in a greedy way according 
to the one of the machine selection rules presented in Table 1 which promises a short 
schedule at the stage with parallel machines. 

30



Algorithms Using List Scheduling and Greedy Strategies…   
 

 

 The remainder of the paper is organized as follows. In the next sections, the al-
gorithms are presented. The results of the computational experiment are reported in 
Section 3. Section 4 summarizes the paper. 

 
2 Algorithms  

 
2.1 Algorithms for scheduling in the flowshop with parallel machines 
at stage 1 and one machine at stage 2 
 
In this section, we consider the problem of scheduling in a two-stage flowshop with 
parallel unrelated machines at the first stage and a single machine at the second stage. 
All the jobs are ready for processing at stage 1 at time 0. The jobs during their pro-
cessing use additional renewable resources which are available in limited quantities 
at any time. Resource requirements of jobs are arbitrary integer numbers (different 
for different jobs and different machines) or are assumed to be of 0-1 type. 

The algorithms solving this problem proceed as follows. 
1. Create a list of jobs ordered according to the priority rule.  
2. For each successive job ݆ from the list: 
3.  Choose machine ݅ for processing job ݆ at stage 1 according to  

a machine selection rule.  
4.  Start processing job ݆ on machine ݅ as early as possible so that re-

source constraints are satisfied at any moment. 
5. For each job the processing of which finished at stage 1, start its pro-

cessing at stage 2 when the second stage machine becomes free.  
 
The priority rule used in the algorithms is based on the Johnson’s rule and oper-

ates as follows. First, it sorts jobs with ݌௝௠௜௡ ≤  .௝௠௜௡݌  ௝  in non-decreasing order ofݏ
Then, it sorts the remaining jobs in non-increasing order of ݏ௝, where  ݏ௝ is the pro-

cessing time of job ݆	at stage 2, ݌௝௠௜௡ = min௜ୀଵ,…,௠ -௜௝, where ݉ is the number of ma݌

chines and ݌௜௝	is the processing time of job ݆ on machine ݅ at stage 1. The machine 

selection rules used by the algorithms are presented in Table 1. 
The algorithms for solving the problem with parallel unrelated machines at stage 

1 and one machine at stage 2, implementing rules M1-M4 will be, respectively, re-
ferred to as RM1-RM4.  
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2.2 Algorithms for scheduling in the flowshop with one machine at 
stage 1 and parallel machines at stage 2 

 
In this section, we consider the two-stage flowshop with one machine at stage 1 and 
parallel unrelated machines at stage 2. Resources available in limited quantities at 
any moment are shared among the stages, which means that they can be used at the 
same time at different stages. So, if a resource is used at one stage, its quantity avail-
able at the same time at the other stage lessens. Resource requirements of jobs are 
assumed to be arbitrary integers.  

At stage 2 with parallel machines successive jobs have different ready times 
which are equal to their completion times at stage 1. The resource availability at 
stage 2 is different in different time intervals between the ready times of the succes-
sive jobs. Therefore, the algorithms developed in this section proceed in  
a different way than those presented in the previous section. These algorithms can 
be outlined as follows.  

 
1. Create a list of jobs ordered according to the priority rule and execute jobs 

from the list one by one on the machine at stage 1.  
2. For each successive time interval ݇: 
3.  Let ܬ௞ be the set of all jobs that are available for processing at stage  

2 in time interval ݇ (i.e. jobs that finished their processing at stage  
1 before interval ݇ begins) and were not yet executed at stage 2.  

4.  For each successive job ݆ from the job list, which belongs to set ܬ௞: 
5.   Choose machine ݅ for processing job ݆ at stage 2 according to  

a machine selection rule. 
6. 
 

  Start processing job ݆ on machine ݅ in interval ݇ as early as pos-
sible so that resource constraints are satisfied at every moment. If 
job ݆ cannot start in interval ݇, remove it from set ܬ௞. 

  
As a priority rule, we use the best priority rule from [4]. It is based on the Johnson’s 
rule, but beside jobs processing times, it takes into account also resource require-
ments of jobs. This rule operates as follows.  First, it sorts jobs with ݌௝ ≤  ௝௠௜௡ inݏ
non-decreasing order of  ݌௝ ⁄ത௝ߙ . Then, it sorts the remaining jobs  in non-increasing 

order of ݏ௝௠௜௡̅ߚ௝, where: ݌௝ is the processing time of job ݆	at stage 1, ݏ௝௠௜௡ =min௜ୀଵ,…,௠ ത௝ߙ ,is the processing time of job ݆ on machine ݅ at stage 2	௜௝ݏ ௜௝, where ݉ is the number of machines andݏ = ଵ௟ ∑ ௝௥ߙ ௥ܹ⁄௟௥ୀଵ ௝ߚ̅ , = ଵ௟ ∑ ௞௝௥ߚ ௥ܹ⁄௟௥ୀଵ , where {݇ =݅: ௜௝ݏ = ,௜௝௠௜௡ݏ ݅ = 1,… ,݉}, ݈ is the number of resources, ௥ܹ is the availability of 
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resource ߙ ,ݎ௝௥ and ߚ௜௝௥ are the numbers of units of resource ݎ required by job ݆, 
respectively, on the machine at stage 1 and on machine ݅ at stage 2.  

The algorithms for solving the problem with resources shared among the stages 
use rules M1-M4, and will be, respectively, referred to as SM1-SM4. 

 
3 Computational experiments  
 
In this section, the results of a computational experiment are presented.  

To evaluate the quality of the heuristic solutions we use values of the percentage 
deviation of the heuristic makespan from the lower bound on the optimal makespan: 

ߜ  = ஼೘ೌೣି௅஻௅஻ × 100%  (1) 

 
where ܥ௠௔௫ is the best makespan (maximal completion time) found by the heu-

ristic algorithm, and ܤܮ is the lower bound on the optimal makespan. We use the 
lower bounds derived in [2,3,4].  

Results are analyzed in terms of the following parameters:  
 the number of jobs ݊, 
 the number of machines ݉,  
 the resource availability ܹ,  
 the ranges of job processing times at stage 1, [݌], and at stage 2, [s],  
 the ranges of job resource requirements at stage 1, [ߙ], and at stage 2, [ߚ], 
 the values of the dominance factor, ߠ (for the problems with parallel ma-

chines at stage 1), which is defined as the ratio of the optimal length of the 
schedule at stage 1 to the sum of the job processing times at stage 2 (see 
[2]).  

The values of ߠ close to 1 indicate that the stages are balanced, which is the most 
important case from the practical point of view, but, which, at the same time, is the 
most difficult one to solve. If ߠ is less or greater than 1, one of the stages dominates 
the other. 

 
3.1 Computational experiments for the problem with parallel machines 
at stage 1, one machine at stage 2 and resource requirements of 0-1 type 
 
In this section we present the results of the experiment carried out for the problem 
with parallel machines at stage 1 and one machine at stage 2 in the case when 
jobs have resource requirements of 0-1 type (i.e. a job uses 1 unit of a resource 
or does not use a resource).  In the experiment, the data sets from [2] were used.  
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Table 2: Computational results for the problem with parallel machines at stage 1, 
one machine at stage 2 and resource requirements of 0-1 type     
 

ߜ       [%] CPU 
time [s]

A5T ݊ ݉ ܹ  [݌] ߠ RM1 RM2 RM3 RM2 ߜ [%] CPU time [s] 
40 4 2  [30,60] 0.68 19.5 3.0 0.9 0.008 0.23 1.34 
    [50,100] 1.12 72.7 41.5 43.3 0.011 1.59 1.29 
    [70,140] 1.55 82.6 46.0 42.7 0.011 1.97 1.26 

40 8 4  [50,100] 0.62 18.2 1.8 0.4 0.016 0.12 1.31 
    [70,140] 0.86 58.5 19.1 16.8 0.018 0.34 1.28 
    [90,180] 1.12 87.1 43.8 40.9 0.017 2.30 1.31 
    [110,220] 1.34 104.9 55.5 50.0 0.016 4.73 1.31 
    [130,260] 1.59 104.7 54.8 52.1 0.016 3.84 1.30 

40 4 4  [30,60] 0.80 56.6 19.7 23.6 0.011 0.21 1.19 
    [50,100] 1.36 99.9 48.2 60.5 0.012 1.19 1.20 
    [70,140] 1.86 104.4 52.2 61.4 0.011 1.08 1.20 

40 8 8  [50,100] 0.77 47.6 10.7 10.3 0.024 0.28 1.26 
    [70,140] 1.07 88.2 37.3 37.4 0.024 1.05 1.33 
    [90,180] 1.38 109.0 52.2 55.0 0.024 3.23 1.33 
    [110,220] 1.78 103.0 49.9 52.7 0.023 2.35 1.28 
    [130,260] 2.02 103.2 50.4 53.4 0.023 2.20 1.32 

80 4 2  [30,60] 0.66 16.2 1.2 0.3 0.059 0.09 2.44 
    [50,100] 1.08 80.6 45.6 41.9 0.059 0.83 2.49 
    [70,140] 1.52 80.0 47.5 44.2 0.048 0.93 2.53 

80 8 4  [50,100] 0.56 13.2 0.6 0.1 0.088 0.07 2.62 
    [70,140] 0.79 55.1 20.2 12.5 0.089 0.12 2.64 
    [90,180] 1.03 91.9 47.1 43.5 0.090 0.69 2.61 
    [110,220] 1.27 99.8 55.2 49.4 0.090 2.30 2.62 
    [130,260] 1.54 99.6 54.2 45.0 0.093 1.96 2.59 

80 4 4  [30,60] 0.74 58.5 18.1 23.5 0.071 0.13 2.50 
    [50,100] 1.23 117.6 61.0 75.7 0.072 0.59 2.54 
    [70,140] 1.74 114.8 60.5 71.9 0.070 0.51 2.59 

80 8 8  [50,100] 0.68 45.8 7.9 7.6 0.138 0.11 2.68 
    [70,140] 0.97 99.6 43.2 45.4 0.137 0.45 2.66 
    [90,180] 1.25 111.4 58.3 62.4 0.137 1.70 2.63 
    [110,220] 1.50 125.3 59.9 62.8 0.135 1.71 2.63 
    [130,260] 1.83 121.9 60.0 61.3 0.144 1.27 2.65 
    Average 81.0 38.3 39.0 0.056 1.26 1.95 

 
The results are shown in Table 2.  
 The first 5 columns of the table indicate values of the problem parameters: ݊, ݉, ܹ, [݌] and ߠ. The range [s] was set at [10,20]. In columns 6-8 of the table, 
the average (over 50 problem instances) deviations ߜ obtained by algorithms 
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RM1-RM3 are presented. Column 9 shows the computation times for RM2 (com-
putation times of the other algorithms are almost the same). The last two columns 
show deviations ߜ and computation times for algorithm A5T from our previous 
work [2], which uses linear programming and a tabu search algorithm.  

 
Table 3: Computational results for the problem with parallel machines at stage 1, 
one machine at stage 2 and arbitrary resource requirements of jobs 
 

ߜ      [%] CPU time 
[s] 

 HS 

n ݉ [݌] ߠ  RM1 RM2 RM3 RM4 RM3  ߜ [%] CPU time 
[s] 

20 2 [1,100] 0.37  4.6 2.4 0.0 2.4 0.001  0.02 1.85 
  [1,200] 0.73  64.0 45.5 15.2 37.5 0.001  0.20 1.82 
  [1,400] 1.52  130.4 101.0 54.5 106.9 0.001  1.55 1.84 
  [1,600] 2.30  134.7 105.4 53.5 97.8 0.001  1.01 1.83 
             
 4 [1,200] 0.35  54.0 42.2 0.8 7.3 0.002  0.02 2.69 
  [1,400] 0.66  220.6 173.0 26.7 80.6 0.002  0.58 2.74 
  [1,600] 1.02  335.8 289.6 69.5 149.3 0.002  4.06 2.74 
  [1,800] 1.17  384.8 348.3 87.3 168.5 0.002  5.55 2.83 
  [1,1000] 1.71  377.5 320.7 83.0 174.8 0.002  3.87 2.82 
  [1,1200] 2.05  369.2 343.4 94.4 170.5 0.002  3.75 2.83 
  [1,1400] 2.20  399.5 333.7 88.5 196.7 0.002  2.66 2.92 
             

60 2 [1,100] 0.37  1.8 1.1 0.0 0.9 0.022  0.01 11.19 
  [1,200] 0.72  71.3 50.0 15.7 42.5 0.020  0.00 11 
  [1,400] 1.43  140.6 113.0 60.1 98.5 0.020  0.34 11.42 
  [1,600] 2.14  141.3 114.2 62.1 100.1 0.020  0.24 11.6 
             
 4 [1,200] 0.30  55.8 39.2 0.0 2.0 0.023  0.00 13.53 
  [1,400] 0.62  207.9 174.2 22.0 59.6 0.024  0.01 14.29 
  [1,600] 0.95  341.1 295.9 79.6 132.9 0.023  0.35 14.25 
  [1,800] 1.22  405.8 352.9 97.3 160.6 0.024  1.46 14.15 
  [1,1000] 1.50  420.3 362.9 101.1 169.0 0.023  1.02 13.89 
  [1,1200] 1.89  389.7 337.1 96.7 165.0 0.025  0.67 14.14 
  [1,1400] 2.19  402.6 350.0 100.6 157.5 0.025  0.55 13.59 
             
  Average   229.7 195.3 54.9 103.7 0.012  1.27 7.73 

 
In Table 2, we can see that the algorithms using machine selection rules M2 and 
M3 (let us recall that, for a given job, M2 chooses the first free machine, M3 
chooses the machine with the smallest processing time of this jobs), provide 
about two times better results than the algorithms with rule M1 (which chooses 
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the machines randomly). The smallest deviations	ߜ are obtained when dominance 
factor ߠ is less than 1 (i.e. when stage 2 dominates stage 1). The values of 
 .is close to 1 (i.e. stages become balanced) ߠ until ,ߠ increase with increasing  ߜ 
Further increase in ߠ do not deteriorate the solutions. The number of jobs and 
machines does not seem to affect the quality of the solutions. The average devi-
ations ߜ obtained by algorithms RM2 and RM3 are slightly less than 40%. The 
computation times do not exceed 0.15 seconds. 

 Algorithm A5T provided the average deviations ߜ equal to 1.26% using from 
about 1 to about 3 seconds of computation time [2].  

The computations were carried out on a PC with Celeron 2.4GHz processor 
and 512GB RAM.  

 
3.2 Computational experiments for the problem with parallel machines 
at stage 1, one machine at stage 2 and arbitrary resource requirements 
 
In this section, the computational experiment was carried out for the problem with 
parallel machines at stage 1 and one machine at stage 2 in the case when resource 
requirements of jobs are arbitrary integers taken from some interval. In the experi-
ment, the data sets from [3] were used.  

The results of the experiment are presented in Table 3.The first 4 columns of the 
table show the values of the problem parameters: ݊, ݉, [݌] and ߠ. The values of the 
remaining parameters are as follows: [s] = [1,100], ܹ =10, and [ߙ] = [1,10]. Columns 
5-8 of the table contain the average (over 50 problem instances) values of deviations ߜ obtained by algorithms RM1-RM4. The computation times (of RM3 as a repre-
sentative of all the algorithms) are indicated in column 9. The last 2 columns contain 
the results obtained in [3] by algorithm HS using column generation and simulated 
annealing procedures. 

In Table 3, we can see that the algorithm applying rule M3 (favoring a machine 
with the smallest processing time for a given job) significantly outperforms the other 
algorithms. It provides the solutions about 4 times better than RM1 and RM2, and 
about 2 times better than RM4. The smallest deviations	ߜ are obtained in the cases 
when the first stage schedules are about 3 times shorter than those at the second 
stage. For the most important problems with  ߠ ≈ 1, deviations ߜ become greater 
and almost do not change with the further increase in the values of ߠ, i.e. for the 
problems where the first stage is a dominant one.  The deviations ߜ increase with 
increasing the number of machines. The number of jobs seems not to influence the 
performance the algorithms. The average deviation ߜ obtained by RM3 is equal to 
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about 55%. The computation times of algorithms RM1-RM4 did not exceed 0.025 
seconds for all tested problem instances. 

 Algorithm HS provided solution with average ߜ = 1.27%  using from about 2 
about 14 seconds [3].   

The computations were performed on a PC with Celeron 1.3GHz processor and 
2GB RAM. 

 
3.3 Computational experiments for the problem with one machine at 
stage 1, parallel machines at stage 2 and resources shared among the 
stages 
 
In this section, the computational experiment was conducted for the problem with 
one machine at stage 1 and parallel machines at stage 2, where resources are shared 
among the stages. The data sets from [4] were used.  

The results of the experiment are presented in Table 4. The first 3 columns of the 
table indicate the values of the problem parameters: ܹ, ݊ and ݉. The values of the 
remaining parameters are as follows: [p] = [1,100], [s] = [1,100݉], [ߙ] = [1,10] and 
-In columns 4-7 of table the average (over 10 problem instances) per .[1,10] = [ߚ]
centage deviations	ߜ produced by the algorithms are shown. Column 8 contains the 
computation times. The last two columns present deviations ߜ and computation times 
for the column generation based algorithm, denoted as A5, proposed in [4].  

In Table 4, we can see that algorithm SM3 outperforms the other algorithms. It 
provides more than 3 times better results than algorithms SM1 and about 2 times 
better results than algorithms SM2 and SM4.  
 The performance of the algorithms considerably improves when resource con-
straints are weak (ܹ = 14) in comparison with the case when resource constraints 
are strong (ܹ = 10). If the number of machines grows, the performance of the al-
gorithms deteriorates. The increase in the number of jobs slightly improves the re-
sults. On the average, deviations ߜ obtained by algorithm SM3 are equal to about 
47% and 28% for problems with, respectively strong and weak resource constraints. 

The computation times of algorithm SM3 did not exceed 0.81 seconds. They be-
come smaller with weakening the resource constraints. The average computation 
times were equal to 0.27 and 0.18 seconds for problems with, respectively, strong 
and weak resource constraints. 

Algorithm A5 used on the average 26 and 9 seconds of the computation time if 
resource constraints were, respectively, strong and weak, and produced the average 
deviations ߜ equal to 0.8% and 0.16%, respectively, for ܹ = 10 and ܹ = 14.  
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The computations were carried out on the PC with Celeron 1.3GHz processor and 
2GB RAM. 

 
Table 4: Computational results for the problem with one machine at stage 1, parallel 
machines at stage 2 and resources shared among the stages 
 

ߜ      [%]    CPU time [s]  A5 ܹ ݊ ݉  SM1 SM2 SM3 SM4  SM3  ߜ [%] CPU time [s] 
10 20 2  64.3 54.8 40.6 60.3  0.008  4.21 1.29 
  4  164.5 132.6 58.8 94.9  0.0095  2.25 1.57 
  6  232.7 203.2 54.1 121.4  0.0103  0.28 1.57 
 40 2  59.7 55.2 40.0 61.1  0.0645  1.00 6.33 
  4  123.6 122.8 49.2 83.9  0.0735  0.58 7.51 
  6  211.8 200.2 61.8 99.2  0.0843  0.17 7.64 
 60 2  56.1 46.6 37.1 48.1  0.2485  0.42 26.29 
  4  137.0 104.7 44.2 81.5  0.283  0.10 28.02 
  6  220.9 188.6 51.8 98.1  0.3112  0.16 35.53 
 80 2  53.8 47.4 32.1 50.8  0.6338  0.24 53.79 
  4  121.4 100.4 46.6 77.3  0.7482  0.06 62.55 
  6  191.4 162.2 50.2 98.4  0.8057  0.05 77.77 
             

Average   136.4 118.2 47.2 81.3  0.2734  0.79 25.82 
             

14 20 2  40.7 27.5 19.6 42.4  0.0045  0.65 0.86 
  4  100.9 93.9 35.9 69.6  0.0062  0.14 0.90 
  6  177.9 139.2 35.9 100.5  0.0067  0.28 0.78 
 40 2  37.4 28.1 18.5 27.9  0.0397  0.11 2.64 
  4  87.0 61.1 27.7 50.5  0.0525  0.20 2.63 
  6  162.9 122.8 42.8 98.7  0.0643  0.20 3.44 
 60 2  41.2 36.4 18.3 34.4  0.1405  0.01 9.44 
  4  88.9 51.0 29.1 50.5  0.1942  0.02 8.71 
  6  146.6 107.1 33.9 92.1  0.2185  0.11 9.59 
 80 2  18.6 14.8 9.4 20.1  0.3283  0.02 18.50 
  4  64.8 48.1 29.2 46.1  0.5528  0.05 22.19 
  6  133.2 94.1 29.1 78.7  0.581  0.07 22.41 
             

Average   91.7 68.7 27.5 59.3  0.1824  0.16 8.51 

 
 

4 Summary  
 
In this paper, we proposed fast algorithms using list scheduling and greedy strategies 
for solving the resource constrained scheduling problem in the two-stage hybrid 
flowshop in two cases. 
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(1) Parallel unrelated machines and resources with availability limited at any mo-
ment are at the first stage. Moreover job resource requirements are of 0-1 type 
or arbitrary integers.  

(2) The flowshop has parallel unrelated machines at stage 2. The resources with 
availability limited at any moment are shared among the stages. Jobs have 
arbitrary resource requirements. In both cases the objective was minimization 
of the makespan.  

The extensive computational experiment was carried out using 2940 randomly gen-
erated problem instances. To evaluate the performance of the proposed algorithms 
the values of percentage deviation ߜ of the heuristic makespan from the lower bound 
on the optimal makespan were calculated. The results of the experiment show that 
the algorithms used in this paper are fast. The computation time and deviation ߜ of 
the best algorithms, on the average over all the instances used in the experiment, are 
equal, respectively, to 0.1 seconds and 42.7%.    

We compared the results obtained in this paper with the results reported in our 
previous works [2,3,4] where the same problems were solved by the algorithms using 
linear programming and metaheuristcs. The computation time and deviation ߜ of 
those algorithms, on the average over all the instances used in the experiment, are 
equal, respectively, to 8.3 seconds and 1.0%.    
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