PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research treats about producing activated carbons for CO2  capture from hazelnut shells (HN), walnut shells (WN) and peanut shells (PN). Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2  adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2  adsorption had samples: PN900 at 0°C (5.5 mmol/g) and WN900 at 25°C (4.34 mmol/g). All of the samples had a well-developed microporous structure.
Słowa kluczowe
Rocznik
Strony
38--43
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, Pulaskiego 10, 70-322Szczecin, Poland
Bibliografia
  • 1. Xiao-Gen, S. & Hui-Qiang L. (2009). Discussion on low-carbon economy and low-carbon building technology. Nat. Sci. 1, 37–40. DOI: 10.4236/ns.2009.11007.
  • 2. Leung, D.Y.C., Caramanna, G. & Maroto-Valer, M.M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443. DOI: 10.1016/j.rser.2014.07.093.
  • 3. Gong, J. Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustainable Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.
  • 4. Wang, Y.X., Liu, B.S. & Zheng, C. (2010). Preparation and Adsorption Properties of Corncob-Derived Activated Carbon with High Surface Area. J. Chem. Eng. 55, 4669–4676. DOI: 10.1021/je1002913.
  • 5. Alves Fiuza, Jr., R., Medeiros de Jesus Neto R., Bacelar Correia, L. & Carvalho Andrade, H.M. (2015). Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. J. Environ. Manage. 161, 198–205. DOI: 10.1016/j.jenvman.2015.06.053.
  • 6. Kapica-Kozar, J., Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Wrobel, R.J., Mozia, S. & Morawski, A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mat. 202, 241–249. DOI: 10.1016/j.micromeso.2014.10.013.
  • 7. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wrobel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. DOI: 10.1039/c6nj02808j.
  • 8. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst, J. CO2 Util. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.
  • 9. Romero-Hermida, I., Santos, A., Pérez-López, R., García-Tenorio, R., Esquivias, L. & Morales-Flórez, V. (2017). New method for carbon dioxide mineralization based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products. J. CO2 Util. 18, 15–22. DOI: 10.1016/j.jcou.2017.01.002.
  • 10. Bradley, M.J., Ananth, R., Willauer, H.D., Baldwin, J.W., Hardy, D.R., DiMascio, F. & Williams, F.W. (2017). The role of catalyst environment on CO2 hydrogenation in a fixed-bed reactor. J. CO2 Util. 17, 1–9. DOI: 10.1016/j.jcou.2016.10.014.
  • 11. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.
  • 12, Pakhare, D. & Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43, 7813–7837. DOI: 10.1039/C3CS60395D.
  • 13, Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A-Gen. 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.
  • 14. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.
  • 15. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.
  • 16. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T, M and H forms of niobium (V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.
  • 17. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. 59, 403–408. DOI: 10.1016/j.apcata.2004.09.005.
  • 18. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.
  • 19. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14, 19–21. DOI: 10.2478/v10026-012-0096-z.
  • 20. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.
  • 21. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.
  • 22. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal. A-Gen. 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.
  • 23. Jarosińska, M., Lubkowski, K., Sośnicki, J.G. & Michalkiewicz, B. (2008). Application of halogens as catalysts of CH4 esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.
  • 24. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.
  • 25. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 1–6. DOI: 10.1088/0957-4484/21/14/145308.
  • 26. Ziebro, J., Skorupinska, B., Kadziolka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Fuller. Nanotub. Car. N. 21, 333–345. DOI: 10.1080/1536383X.2011.613543.
  • 27. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A 129, 153–157. DOI: 10.12693/APhysPolA.129.153.
  • 28. Ziebro, J., Lukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy. Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.
  • 29. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.
  • 30. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energ. 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.
  • 31. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B. & Ruppert, A.M. (2016). Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas, Int. J. Hydrogen Energ. 41, 8656–8667. DOI: 10.1016/j.ijhydene.2015.12.146.
  • 32. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22, 635–46. DOI: 10.1007/s10934-015-9936-6.
  • 33. Kapica-Kozar, J., Piróg, E., Wróbel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.
  • 34. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrogen Energ. 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.
  • 35. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.
  • 36. Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.
  • 37. Alcañiz-Monge, J., Lozano-Castelló, D., Cazorla-Amorós, D. & Linares-Solano, A. (2009). Fundamentals of methane adsorption in microporous carbons. Micropor. Mesopor. Mat. 124, 110–116. DOI: 10.1016/j.micromeso.2009.04.041.
  • 38. Sun, Y., Liu, C., Su, W., Zhou, Y. & Zhou, L. (2009). Principles of methane adsorption and natural gas storage. Adsorption 15, 133–137. DOI: 10.1007/s10450-009-9157-x.
  • 39. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of commercial activated carbons for CO2 adsorption. Acta Phys. Pol. A 129(3), 394–401. DOI: 10.12693/APhysPolA.129.394.
  • 40. Deng, S., Wei, H., Chen, T., Wang, B., Huang, J. & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different tempertemperatures. Chem. Eng. J. 253, 46–54. DOI: 10.1016/j.cej.2014.04.115.
  • 41. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017) An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12, Adsorption, accepted DOI: 10.1007/s10450-017-9867-4.
  • 42. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.
  • 43. Gesikiewicz-Puchalska, A., Zgrzebnicki, M. & Michalkiewicz, B. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.
  • 44. Sreńscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol. J. Chem. Tech. 13(4), 63–70. DOI: 10.2478/v10026-011-0051-4.
  • 45, Savova, D., Apak, E., Ekinci, E., Yardim, F., Petrov N., Budinova, T., Razvigorova, M. & Minkova, V. (2001). Biomass conversion to carbon adsorbents and gas. Biomass Bioenerg. 21, 133–142. DOI: 10.1016/S0961-9534(01)00027-7.
  • 46. Sun, Y. & Webley, P.A. (2011). Preparation of Activated Carbons with Large Specific Surface Areas from Biomass Corncob and Their Adsorption Equilibrium for Methane, Carbon Dioxide, Nitrogen, and Hydrogen. Ind. Eng. Chem. Res. 50, 9286–9294. DOI: 10.1021/ie1024003.
  • 47. Kapica, J., Pełech, R., Przepiórski, J. & Morawski, A.W. (2002). Kinetics of the Adsorption of copper and lead ions from aqueous solution on to WD-ekstra activated carbon. Adsorpt. Sci. Technol. 20, 441–452. DOI: 10.1260/026361702320644734.
  • 48. Przepiórski, J., Czyżewski, A., Kapica, J., Moszyński, D., Grzmil, B., Tryba, B., Mozia, S. & Morawski, A.W. (2012). Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem. Eng. J. 191, 147–153. DOI: 10.1016/j.cej.2012.02.087.
  • 49. Czyżewski, A., Kapica, J., Moszyński, D., Pietrzak, R., Przepiórski, J. (2013). On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem. Eng. J. 226, 348–356. DOI: 10.1016/j.cej.2013.04.061
  • 50. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. J. Adv. Oxid. Technol. 17(1), 44–52. DOI: 10.1515/jaots-2014-0106.
  • 51. Wróblewska, A. (2014). The Epoxidation of Limonene over the TS-1 and Ti-SBA-15 Catalysts. Molecules 19, 19907–19922. DOI: 10.3390/molecules191219907.
  • 52. Wróblewska, A., Ławro, E. & Milchert, E. (2006). Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Ind. Eng. Chem. Res. 45, 7365–7373. DOI: 10.1021/ie0514556.
  • 53. Wróblewska, A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal. A-Gen. 309, 192–200. DOI: 10.1016/j.apcata.2006.05.004.
  • 54. Chen, Y., Zhu, Y., Wang, Z., Li, Y., Wang, L., Ding, L., Gao, X., Ma, Y. & Guo, Y. (2011). Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Adv. Coll. Int. Sci. 163, 39–52. DOI: 10.1016/j.cis.2011.01.006.
  • 55. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.
  • 56. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z. & Michalkiewicz, B. (2016). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. DOI: 10.1007/s10562-016-1910-7.
  • 57. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2016). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. DOI: 10.1515/gps-2016-0148
  • 58. Adib Yahya, M., Al-Qodah, Z. & Zanariah Ngah, C.W. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 46, 218–235. DOI: 10.1016/j.rser.2015.02.051.
  • 59. Rashidi, N.A., Yusup, S. & Borhan, A. (2014). Development of Novel Low-Cost Activated Carbon for Carbon Dioxide Capture. Int. J. Chem. Eng. Appl. 5(29), 90–94. DOI: 10.7763/IJCEA.2014.V5.357.
  • 60. Aygun, A., Yenisoy-Karakas, S. & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Micropor. Mesopor. Mat. 66, 189–195. DOI: 10.1016/j.micromeso.2003.08.028.
  • 61. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta. Phys. Pol. A 129(1), 158–161. DOI: 10.12693/APhysPolA.129.158.
  • 62. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R. & Michalkiewicz, B. (2016). Activated carbons from molasses as CO2 sorbents. Acta. Phys. Pol. A 129(3), 402–404. DOI: 10.1269/APhysPolA.129.402.
  • 63. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Utilization.
  • 64. Deng, S., Hu, B., Chen, T., Wang, B., Huang, J., Wang, Y. & Yu, G. (2015). Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption 21, 125–133. DOI 10.1007/s10450-015-9655-y.
  • 65. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Coll. Int. Sci. 486, 277–286. DOI: 10.1016/j.jcis.2016.10.003.
  • 66. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. J. Coll. Int. Sci. 427, 47–52. DOI: 10.1016/j.colsurfa.2013.03.002.
  • 67. Kwiatkowski, M. & Broniek, E. (2012). Application of the LBET class adsorption models to analyze influence of production process conditions on the obtained microporous structure of activated carbons. Coll. Surf. A. 411, 105–110. DOI: 10.1016/j.colsurfa.2012.06.046.
  • 68. Rechnia, P., Malaika, A., Najder-Kozdrowska, L. & Kozłowski, M. (2012). The effect of ethanol on carbon-catalysed decomposition of methane. Int. J. Hydrogen Energy 37, 7512–7520. DOI: 10.1016/j.ijhydene.2012.02.014.
  • 69. Sayan, E. (2006). Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnut shell: An optimization study on removal of from aqueous solution. Chem. Eng. J. 115, 213–218. DOI: 10.1016/j.cej.2005.09.024.
  • 70. Unur, E. (2013). Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Micropor. Mesopor. Mat. 168, 92–101. DOI: 10.1016/j.micromeso.2012.09.027.
  • 71. Gonzalez, J.F., Roman S., Gonzalez-Garcia, C.M., Valente Nabais, J.M. & Ortiz, A.L. (2009). Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Ind. Eng. Chem. Res. 48, 7474–7481. DOI: 10.1021/ie801848x.
  • 72. Li, D., Tian, Y., Li, L., Li, J. & Zhang, H. (2015). Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char. J. Porous. Mater. 22, 1581–1588. DOI: 10.1007/s10934-015-0041-7.
  • 73. David, E. & Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrol. 110, 322–332. DOI: 10.1016/j.jaap.2014.09.021.
  • 74. Rashidi, A.M., Kazemi, D., Izadi, N., Pourkhalil, M., Jorsaraei, A., Ganji, E. & Lotfi, R. (2016). Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Korean J. Chem. Eng. 33(2), 616–622. DOI: 10.1007/s11814-015-0149-0.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f100a7a-9cad-407c-94b0-0f12dbcea24c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.