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Abstract. In the continuum mechanics there is a class of problems that cannot be solved 

directly or the solutions of these problems are affected by large errors when the classical 

equations of thermoviscoelasticity are considered. The paper discusses a special case of 

such problems - the cyclic bending of a composite plate with a circular hole subjected to 

the stationary self-heating, which was solved within the framework of a moment theory 

of thermoviscoelasticity. 
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Introduction 

The classical theory of viscoelasticity cannot explain several phenomena occur-

ring in the mechanical structures, e.g. the behaviour of polycrystalline bodies under 

the complex loading, and cannot describe satisfactorily a number of other prob-

lems, e.g. the stress concentrations near holes, cutouts and cracks in structural ele-

ments and others [1, 2]. The difficulties occur due to the singularities of the par-

ticular solutions of these problems. In some of them, due to discontinuities and 

singularities, the obtained solutions are quite far from the experimental results. 

However, considering the disagreements between theoretical models and experi-

mental results other approach should be applied to solve the mentioned class of 

problems, which considers the full stress state including the principal moments 

of forces acting on the element of the body. 

The first systematic studies on the moment (or asymmetric) theory of elasticity 

were introduced by Cosserat and Cosserat [3], which considered not only the clas-

sical stresses, but also the moment stresses occurred during complex loading states 

or specific geometry of the considered medium. The proposed theory was not applied 

and developed for over 50 years, until further studies in the area of continuum 

mechanics were performed. 



A. Katunin 76 

The intensive studies concerned with the moment theory of viscoelasticity and 

thermoviscoelasticity were introduced in the late 60s of 20th century, mainly by 

Russian and Ukrainian researchers [1, 4-6]. The moment theory of viscoelasticity 

and thermoviscoelasticity was then developed by several researchers [7, 8] and is 

developed until now, mainly by Pobedrya and his followers [9-11]. One of the 

fundamental studies on the moment theory of thermoviscoelasticity in layered 

composites is a paper of Pobedrya and Rodriguez [9], which presented the coupled 

thermomechanical governing equations for behaviour of such structures under 

non-stationary temperature field. Further studies [10-14] presented a method of 

the determination of material functions for elastic and viscoelastic media, which is 

one of the main problems in the considered theory. The application of moment 

theory for viscoelastic plates was also developed and discussed by Altenbach and 

Eremeyev in [15, 16]. 

The previous studies, concerned with the self-heating effect in polymeric compo- 

sites [17, 18], show that there are two states of self-heating temperature evolution: 

the stationary state (when the temperature grows rapidly and stabilizes on the certain 

value) and the non-stationary state (when the temperature grows following the 

three-phase model until the breakdown of the structure). In this paper, the solution 

of particular problem of quasi-static self-heating of cyclically bent plate with 

a circular hole within the framework of moment theory of thermoviscoelasticity 

was investigated. The construction of descriptive equations for the investigated 

problem is based on the analogy between Hooke’s law and a theory of linear visco-

elasticity. As a result of this study, the equation of moments over the contour of 

a hole was presented. The applied viscoelastic analogy to the elastic problem with 

taking into consideration “moment” stresses could be successfully used for solution 

of time- and temperature-dependent viscoelastic problems. 

1. Basic relations and assumptions 

The stress-strain relation for the linear thermoviscoelastic anisotropic body 

in the case of stress relaxation has a form: 
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where σ and ε are the stress and strain tensors, respectively, and R(t–t’,T) is 

a tensor of time- and temperature-dependent relaxation kernels. 

Considering the analogy between equations of linear elastic and linear viscoelastic 

bodies and applying the Laplace transform [16] 
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to (1) one obtains the Hooke-like equation: 

 εRσ )(s= . (3) 

Following this and considering the layered structure of a composite, governing 

equations of the moment theory of linear thermoviscoelasticity can be presented in 

the similar form (cf. [11]): 
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where µ is the moment stress tensor, S, s, Q, q are the asymmetric tensors of 

time- and temperature-dependent stress relaxation kernels. All above quantities are 

referred to the p-th layer of a composite, where p = 1,2,…,P. 

In this study the small Cauchy strain and small rotations are assumed: 
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where δijk is the permutation tensor. 

For the plane problem of a layered composite plate the displacements have the 

following form: 
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where 22 hzh ≤≤−  is a thickness coordinate and h is a thickness of a plate. 

Using [19] and the above-discussed transformation the stress-strain relations for 

the plane problem are: 
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Here 
i

B  are the “moment” relaxation kernels. Following the fact that the linear 

thermoviscoelastic model is considered the time-temperature superposition principle 
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can be applied for (8), when the stationary self-heating is analyzed (i.e. the quasi- 

-static problem of thermoviscoelasticity is considered): 
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where ⋅~  denote reduced times with respect to real times and Ta  is a horizontal 

shift factor, which could be determined from the Arrhenius relationship [19]. 

2. Bending of the plate 

Considering the moment stresses and the above-presented assumptions, the 

plain problem of bending of a thin viscoelastic plate can be described using the 

following set of equations: 
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where x, y are the Cartesian coordinates, τij are the shear components of a stress 

tensor and ),( yxww = . 

Following the statement that the plane problem is considered some elements 

of the moment stress tensor could be omitted: 
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Considering (10) and the decomposition of the shear stress components into 

axiator and deviator parts: 

 ))(())(()( Dp
ij

Ap
ij

p
ij τττ += , ( ))()())((

2

1 p
ji

p
ij

Ap
ij τττ −= , ( ))()())((

2

1 p
ji

p
ij

Dp
ij τττ += , (12) 

one can write the equilibrium equations for the bent plate (cf. [20]): 
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For the fundamental equation of bending of thin plates 
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where 
)( p

zz
q σ= , the resultant bending Mi and shear Hi moments and the shear forces 

Ni acting in the cross-section of the layered plate, which can be determined by 

the integration of stresses over the plate thickness, can be presented as follows: 
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Equations (15) could be transformed into the following form: 
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where 
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Considering the moments, the final form of stresses could be presented as: 
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Assuming pure bending of a plate 
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the displacements of the bent plate take a form: 
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Considering the boundary conditions based on [20]: 
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one obtains the equation for the moments over the contour of a circular hole: 
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The material functions 
i

B  cannot be determined experimentally, which represents 

the main problem of applicability of the considered theory in practical problems. 
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However, following the studies presented in [11, 13, 14] this problem could be 

particularly solved by the application of a homogenization method used in the first-

order approximation theory. In [14] Omarov presented the example of a determina- 

tion of “moment” material functions for the elastic medium. Following the presented 

approach it is possible to obtain the “moment” relaxation kernels for the thermo-

viscoelastic medium in the same manner. 

Considering results for the elastic problem presented in [21], the deflections of 

a plate with a circular hole within the classical hypotheses are overestimated with 

respect to the moment theory due to taking into account the moment stresses in 

the latter. The same relationship is applicable for the considered problem of linear 

thermoviscoelasticity of cyclically bent plate with a circular following the applied 

viscoelastic analogy to the elastic formulation of a problem. 

Conclusions 

In the following study the theoretical formulation of linear thermoviscoelasticity 

with taking into account moment stresses were presented for a specific problem of 

cyclic bending of a composite layered plate with a circular hole. Following this 

approach, the governing equations of linear theory of thermoviscoelasticity were 

formulated for a stationary state based on the solution of similar elastic problem 

and application of viscoelastic analogy and time-temperature superposition princi-

ple. Such formulation could be useful for modelling of similar problems in order to 

determine the true stress concentrations and bending moment in plates with holes 

subjected to cyclic loading. 

Due to the intensively developed generalizations of formulations of isotropic 

elastic media with consideration of moment stresses to orthotropic [21-23] and 

anisotropic [2, 24] ones, the approach of viscoelastic analogy and time-temperature 

superposition could be used for obtaining similar formulations for linear visco- and 

thermoviscoelasticity as well. 
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