PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization and treatment of clayey waste using a sulfuric acid roasting-water leaching process for the extraction of lithium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a detailed characterization of the clayey waste of the Kırka boron plant was undertaken before the development of a sulfuric acid roasting-water leaching process for the extraction of lithium from this waste. The effects of roasting temperature (650-800°C) and sulfuric acid/waste ratio (90-260 kg H2SO4/1000 kg waste on a dry basis) on the extraction of lithium were investigated. By roasting the waste sample, which contained 0.37% Li2O with dolomite, smectite and borax as the main phases, at temperatures between 650°C and 800°C in the absence of sulfuric acid as the additive, CaMgSiO4 was found to form as the dominant phase after the decomposition of dolomite and smectite present in the sample. On the other hand, the X-ray diffraction analyses of the waste sample subjected to sulfuric acid treatment without roasting showed the in-situ formation of various hydrated calcium sulfate phases for all sulfuric acid/waste ratios tested. Besides, at the highest acid/waste ratio of 260, a hydrated magnesium sulfate phase was also identified in the sample. The application of the sulfuric acid roasting-water leaching process under the optimum roasting temperature of 750°C and the acid/waste ratio of 180 was found to lead to a lithium extraction of 85.7%. The applied sulfuric acid roasting-water leaching process appeared to be an attractive process with its attributes including low roasting temperature, high extraction percentage and no requirement for gypsum as the external sulfation agent.
Rocznik
Strony
art. no. 149635
Opis fizyczny
Bibliogr. 70 poz., rys., wykr.
Twórcy
  • Hacettepe University, Mining Engineering Department, 06800, Beytepe/Ankara, Turkey.
  • Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Boron Research Institute (BOREN), 06520, Çankaya/Ankara, Turkey
  • Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Boron Research Institute (BOREN), 06520, Çankaya/Ankara, Turkey
autor
  • Karadeniz Technical University, Mining Engineering Department, 61080, Merkez/Trabzon, Turkey
  • Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Boron Research Institute (BOREN), 06520, Çankaya/Ankara, Turkey
Bibliografia
  • ADLER, H.H., KERR, P.F., 1963. Infrared absorption frequency trends for anhydrous normal carbonates. Am. Mineral. 48, 124-137.
  • AKYILDIZ, S., 2015. The Evaluation of the Clays and the Tailings of Kırka Borax Mine through Lithium Contents. M.Sc. Thesis, Dokuz Eylul Univ. (in Turkish).
  • ALLEN, R.D., 1957. Differential thermal analysis of selected borate minerals. USGS Bull. 1036-K, 193-208.
  • AMER, A.M., 2008. The hydrometallurgical extraction of lithium from Egyptian montmorillonite-type clay. JOM-J. Min. Met. Mat. S. 60, 55-57.
  • AVERILL, W.A., OLSON, D.L., 1978. A review of extractive processes for lithium from ores and brines. Energy 3, 305-313.
  • BACANORA MINERALS, 2018. Technical report on the feasibility study for the Sonora lithium project. Mexico.
  • BESKARDES, O., ARCA, E., DURUSOY, T., EVREN, V., ONCU, A., OZBAS, T., BAYHAN, H., GUNDOGDU, N., ARAL, H., ERSAYIN, S., GIRGIN, I., 1992. Bigadiç Killerindeki Lityum Mineralleri Potansiyelinin Araştırılması ve Değerlendirilmesi. Hacettepe Univ., Project No: 90.B.05.0010 (in Turkish).
  • BRINDLEY, G.W., BROWN, G. (Editors), 1980. Crystal Structures of Clay Minerals and their X-Ray Identification. Mineralogical Society, London.
  • BUYUKBURC, A., KOKSAL, G., 2005. An attempt to minimize the cost of extracting lithium from boron clays through robust process design. Clays Clay Miner. 53, 301-309.
  • BUYUKBURC, A., MARASLIOGLU, D., 2003. Bor Cevher ve Yankayaçlarında Lityum İçeriğinin Değerlendirme Olanaklarının Araştırılması. Eti Holding, Project No: 2003.C.11.0010 (in Turkish).
  • BUYUKBURC, A., MARASLIOGLU, D., BILICI, M.S., KOKSAL, G., 2006. Extraction of lithium from boron clays by using natural and waste materials and statistical modelling to achieve cost reduction. Miner. Eng. 19, 515-517.
  • CAI, J., BAO, Y., YANG, S., WANG, X., FAN, D., XU, J., WANG, A., 2007. Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone. Sci. China Ser. D 50, 765-775.
  • CHOUBEY, P.K., KIM, M.-S., SRIVASTAVA, R.R., LEE, J.-C., LEE, J.-Y., 2016. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Miner. Eng. 89, 119-137.
  • CHRIST, C.L., CLARK, J.R., 1977. A crystal-chemical classification of borate structures with emphasis on hydrated borates. Phys. Chem. Miner. 2, 59-87.
  • CHRISTENSEN, A.N., OLESEN, M., CERENIUS, Y., JENSEN, T.R., 2008. Formation and transformation of five different phases in the CaSO4-H2O system: Crystal structure of the subhydrate β-CaSO4•0.5H2O and soluble anhydrite CaSO4. Chem. Mater. 20, 2124-2132.
  • COLTON, J.W., 1957. Recovery of lithium from complex silicates. Handling and Uses of the Alkali Metals, Advances in Chemistry Series, Vol. 19, pp. 3-8.
  • CROCKER, L., LIEN, R.H., OTHERS, 1988. Lithium and its recovery from low-grade Nevada clays. USBM Bull. 691.
  • EARNEST, C.M., 1983. Thermal analysis of hectorite. Part II. Differential thermal analysis. Thermochim. Acta 63, 291-306.
  • EDLUND, V.E., 1983. Lime-gypsum processing of McDermitt clay for lithium recovery. USBM Rep. Invest. 8832.
  • EL HAZZAT, M., SIFOU, A., ARSALANE, S., EL HAMIDI, A., 2020. Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and model-free isoconversional method. J. Therm. Anal. Calorim. 140, 657-671.
  • ELLESTAD, R.B., CLARKE, F.F., 1955. Extraction of lithium from its ores. Min. Eng.-Littleton November, 1045-1047.
  • ETI MADEN, 2016. Kırka Killerinden Lityum Karbonat Üretilmesi. Eti Mine Report (in Turkish).
  • GOEL, N., SINHA, N., KUMAR, B., 2013. Growth and properties of sodium tetraborate decahydrate single crystals. Mater. Res. Bull. 48, 1632-1636.
  • GREEN, J.M., MACKENZIE, K.J.D., SHARP, J.H., 1970. Thermal reactions of synthetic hectorite. Clays Clay Miner. 18, 339-346.
  • GRIM, R.E., 1968. Clay Mineralogy. 2nd Edition, McGraw-Hill, New York.
  • GU, H., GUO, T., WEN, H., LUO, C., CUI, Y., DU, S., WANG, N., 2020. Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone. Miner. Eng. 145, 106076.
  • GUNDOGDU, M.N., YILMAZ, O., 1984. Methods of clay mineralogy. Proc. 1st Nat. Clay Symp., Turkey, pp. 319-330 (in Turkish).
  • HELVACI, C., MORDOGAN, H., COLAK, M., GUNDOGAN, I., 2004. Presence and distribution of lithium in borate deposits and some recent lake waters of west-central Turkey. Int. Geol. Rev. 46, 177-190.
  • JUN, L., SHUPING, X., SHIYANG, G., 1995. FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim. Acta A 51, 519-532.
  • KARAKAS, S., OZKASAPOGLU, S., DURDU AYDIN, A., GONEN, N., 2019. Recovery of Lithium from Boron Wastes and Its Economical Evaluation. BOREN Project No: 2016-30-06-30-002 (in Turkish).
  • KARRECH, A., AZADI, M.R., ELCHALAKANI, M., SHAHIN, M.A., SEIBI, A.C., 2020. A review on methods for liberating lithium from pegmatities. Miner. Eng. 145, 106085.
  • KESLER, S.E., GRUBER, P.W., MEDINA, P.A., KEOLEIAN, G.A., EVERSON, M.P., WALLINGTON, T.J., 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48, 55-69.
  • KOMADEL, P., MADEJOVA, J., JANEK, M., GATES, W.P., KIRKPATRICK, R.J., STUCKI, J.W., 1996. Dissolution of hectorite in inorganic acids. Clays Clay Miner. 44, 228-236.
  • KOROGLU, L., AYAS, E., 2018. A systematic study on solid-state synthesis of monticellite (CaMgSiO4) based ceramic powders obtained from boron derivative waste. Adv. Powder Technol. 29, 2835-2844.
  • KULP, J.L., KENT, P., KERR, P.F., 1951. Thermal study of the Ca-Mg-Fe carbonate minerals. Am. Mineral. 36, 643-670.
  • KURAMA, S., KARA, A., KURAMA, H., 2006. The effect of boron waste in phase and microstructural development of a terracotta body during firing. J. Eur. Ceram. Soc. 26, 755-760.
  • LEE, W.-J., YOON, S.-J., CHON, C.-M., HEO, C.-H., LEE, G.-J., LEE, B.-H, CICEK, M., 2016. Lithium extraction from smectitic clay occurring in lithium-bearing boron deposits in Turkey. J. Miner. Soc. Korea 29, 167-177 (in Korean).
  • LI, H., EKSTEEN, J., KUANG, G., 2019. Recovery of lithium from mineral resources: State-of-the-art and perspectives - A review. Hydrometallurgy 189, 105129.
  • LI, R., SHI, Y., SHI, L., ALSAEDI, M., WANG, P., 2018. Harvesting water from air: Using anhydrous salt with sunlight. Environ. Sci. Technol. 52, 5398-5406.
  • LIDE, D.R. (Editor), 2010. CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL.
  • LIEN, R.H., 1985. Recovery of lithium from a montmorillonite-type clay. USBM Rep. Invest. 8967.
  • MA, J., FU, K., SHI, J., SUN, Y., ZHANG, X., DING, L., 2016. Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance. Carbohyd. Polym. 151, 565-575.
  • MAY, J.T., WITKOWSKY, D.S., SEIDEL, D.C., 1980. Extracting lithium from clays by roast-leach treatment. USBM Rep. Invest. 8432.
  • MENG, F., MCNIECE, J., ZADEH, S.S., GHAHREMAN, A., 2019. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Min. Proc. Ext. Met. Rev. 42, 123-141.
  • MESHRAM, P., PANDEY, B.D., MANKHAND, T.R., 2014. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 150, 192-208.
  • MORDOGAN, H., AKDAG, M., HELVACI, C., 1994. Lithium recover from low-grade lithium-bearing clays by H2SO4 and roast-water leach processes. Geosound (Yerbilimleri) 24, 141-150 (in Turkish).
  • MORDOGAN, H., HELVACI, C., MALAYOGLU, U., 1995. Bor yatakları killeri ve güncel göllerdeki lityum varlığı ve değerlendirme olanakları. Industrial Minerals Symposium, İzmir/Turkey, pp. 185-196 (in Turkish).
  • ONAL, M., SARIKAYA, Y., 2007. Thermal behaviour of a bentonite. J. Therm. Anal. Calorim. 90, 167-172.
  • OZBAS, R., 2019. Recovery of Precious Metals from Boron Wastes. M.Sc. Thesis, Yıldız Technical Univ. (in Turkish).
  • OZBAS, R., DERUN, E.M., 2021. Leaching of lithium and rubidium elements from boron production wastes. J. Chem. Technol. Metall. 56, 845-852.
  • PANNA, W., SZUMERA, M., WYSZOMIRSKI, P., 2016. The impact of modifications of the smectite-bearing raw materials on their thermal expansion ability. J. Therm. Anal. Calorim. 123, 1153-1161.
  • RIBEIRO, J.S., OK, S.S., GARRIGUES, S., DE LA GUARDIA, M., 2001. FTIR tentative characterization of humic acids extracted from organic materials. Spectrosc. Lett. 34, 179-190.
  • SALAKJANI, N.K., SINGH, P., NIKOLOSKI, A.N., 2021. Production of lithium – A literature review. Part 2. Extraction from spodumene. Min. Proc. Ext. Met. Rev. 42, 268-283.
  • SIMSEK, O., 2006. Beneficiation of Kırka Tincal Ore by Decripitation Method. M.Sc. Thesis, Eskisehir Osmangazi Univ. (in Turkish).
  • STEUDEL, A., BATENBURG, L.F., FISCHER, H.R., WEIDLER, P.G., EMMERICH, K., 2009. Alteration of swelling clay minerals by acid activation. Appl. Clay Sci. 44, 105-115.
  • STRANDKVIST, I., BJORKMAN, B., ENGSTROM, F., 2015. Synthesis and dissolution of slag minerals - a study of β-dicalcium silicate, pseudowollastonite and monticellite. Can. Metall. Quart. 54, 446-454.
  • SWAIN, B., 2017. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 172, 388-403.
  • SWIFT, W.M., PANEK, A.F., SMITH, G.W., VOGEL, G.J., JONKE, A.A., 1976. Decomposition of calcium sulfate: A review of the literature. Argonne National Laboratory Report, ANL-76-122, 55 pages.
  • TATZBER, M., STEMMER, M., SPIEGEL, H., KATZLBERGER, C., HABERHAUER, G., MENTLER, A., GERZABEK, M.H., 2007. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sc. 170, 522-529.
  • TRINDADE, M.J., DIAS, M.I., COROADO, J., ROCHA, F., 2010. Firing tests on clay-rich raw materials from the Algarve basin (southern Portugal): Study of mineral transformations with temperature. Clays Clay Miner. 58, 188-204.
  • ULUSOY, M., GULMEZ, A., 2012. Kırka Bor Tesisi Kil Atıklarından Lityum Bileşiklerinin Kazanma Olanaklarının Araştırılması. MTA Report (in Turkish).
  • VAN ESSEN, V.M., ZONDAG, H.A., COT GORES, J., BLEIJENDAAL, L.P.J., BAKKER, M., SCHUITEMA, R., VAN HELDEN, W.G.J., HE, Z., RINDT, C.C.M., 2009. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. J. Sol. Energ.-T. ASME 131, 041014 (7 p.).
  • WACLAWSKA, I., 1995. Thermal decomposition of borax. J. Therm. Anal. 43, 261-269.
  • WEIR, C.E., LIPPINCOTT, E.R., 1961. Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. J. Res. NBS. A. Phys. Ch. 65, 173-183.
  • WEST, R.R., SUTTON, W.J., 1954. Thermography of gypsum. J. Am. Ceram. Soc. 37, 221-224.
  • WESTERN LITHIUM, 2014. Updated NI 43-101 Technical Report. Kings valley property Humboldt county, Nevada.
  • ZBRANEK, V., BERTOLLI, S., VARGAS, P., 2013. Production of lithium and potassium compounds. US Pat. 8431005 B1.
  • ZHANG, P., ZHAO, D.Q., 2020. Characterization and dimethyl phthalate flocculation performance of the cationic polyacrylamide flocculant P(AM-DMDAAC) produced by microwave-assisted synthesis. Molecules 25, 624.
  • ZHANG, X., CHEN, Z. ROHANI, S., HE, M., TAN, X., LIU, W., 2022. Simultaneous extraction of lithium, rubidium, cesium and potassium from lepidolite via roasting with iron(II) sulfate followed by water leaching. Hydrometallurgy 208, 105820.
  • ZHU, L., GU, H., WEN, H., YANG, Y., 2021. Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process. Hydrometallurgy 206, 105759.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f049c9d-6169-49cd-b6f2-58b53ed2a129
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.