PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation of bisphenol A and pyrene from highway retention basin water using ultrasound enhanced by UV irradiation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the so-called road run-off, many various contaminants including Bisphenol A (BPA) and Pyrene (PYR) could enter the environment and retention basins. It was also suggested in the literature that their removal by using conventional treatment methods could be problematic, and modern techniques should be developed. In this study, the first attempt to remove BPA and PYR by using ultrasonication as a single process and with UV irradiation assistance was performed. The results showed that after 30 min of sonication, the degradation rate of BPA reached 92% while PYR was completely removed, however, after 1 min of the treatment degradation rate of BPA was significantly higher than PYR. In the study effect of pulsed ultrasound was also evaluated and it was found that its effectiveness in micropollutants removal could be higher than ultrasonication in continuous mode. Research revealed that the maximum removal rate of BPA and PYR was obtained during the ultrasonication process combined with UV irradiation-30 min of treatment resulted in 95% of BPA degradation. However, toxicity assessment showed that with an increase in the treatment time, an increase of toxic effects occurs. This phenomenon might be related to degradation of by-products formation which were identified in the study.
Rocznik
Strony
135--148
Opis fizyczny
Bibliogr. 93 poz.
Twórcy
autor
  • MSc; The Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Water and Wastewater Engineering, Akademicka 2A, 44-100 Gliwice, Poland
autor
  • PhD; The Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Water and Wastewater Engineering, Akademicka 2A, 44-100 Gliwice, Poland
  • Prof.; The Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Water and Wastewater Engineering, Akademicka 2A, 44-100 Gliwice
Bibliografia
  • [1] Kudlek, E. (2018). Decomposition of contaminants of emerging concern in advanced oxidation processes. Water (Switzerland), 10(7). https://doi.org/10.3390/w10070955
  • [2] Mason, T. J., & Pétrier, C. (2004). Ultrasound processes. Advanced oxidation processes for water and wastewater treatment, (May), 185-208. Retrieved from http://www.iwapublishing.com/books/9781843390176/advanced-oxidation-processes-water-and-wastewater-treatment
  • [3] Ma, Y., Liu, H., Wu, J., Yuan, L., Wang, Y., Du, X., Zhang, H. (2019). The adverse health effects of bisphenol A and related toxicity mechanisms. Environmental Research, 176(June). https://doi.org/10.1016/j.envres.2019.108575
  • [4] David, B. (2009). Sonochemical degradation of PAH in aqueous solution. Part I: Monocomponent PAH solution. Ultrasonics Sonochemistry, 16(2), 260-265. https://doi.org/10.1016/j.ultsonch.2008.07.013
  • [5] Gültekin, I., & Ince, N. H. (2008). Ultrasonic destruction of bisphenol-A: The operating parameters. Ultrasonics Sonochemistry, 15(4), 524-529. https://doi.org/10.1016/j.ultsonch.2007.05.005
  • [6] Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research. https://doi.org/10.1093/nar/gkv951
  • [7] Liu, Z. hua, Kanjo, Y., & Mizutani, S. (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: A review. Science of the Total Environment, 407(2), 731-748. https://doi.org/10.1016/j.scitotenv.2008.08.039
  • [8] Meng, L., Gan, L., Gong, H., Su, J., Wang, P., Li, W., Xu, L. (2019). Efficient degradation of bisphenol A using High-Frequency Ultrasound: Analysis of influencing factors and mechanistic investigation. Journal of Cleaner Production, 232, 1195-1203. https://doi.org/10.1016/j.jclepro.2019.06.055
  • [9] Zhang, K., Gao, N., Deng, Y., Lin, T. F., Ma, Y., Li, L., & Sui, M. (2011). Degradation of bisphenol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide. Journal of Environmental Sciences. https://doi.org/10.1016/S1001-0742(10)60397-X
  • [10] Koestel, Z. L., Backus, R. C., Tsuruta, K., Spollen, W. G., Johnson, S. A., Javurek, A. B., … Rosenfeld, C. S. (2017). Bisphenol A (BPA) in the serum of pet dogs following short-term consumption of canned dog food and potential health consequences of exposure to BPA. Science of the Total Environment, 579, 1804-1814. https://doi.org/10.1016/j.scitotenv.2016.11.162
  • [11] Rosenfeld, P. E., & Feng, L. G. H. (2011). Mercury, BPA, and Pesticides in Food. Risks of Hazardous Wastes, 223-235. https://doi.org/10.1016/B978-1-4377-7842-7.00017-9
  • [12] Rotimi, O. A., Olawole, T. D., De Campos, O. C., Adelani, I. B., & Rotimi, S. O. (2021). Bisphenol A in Africa: A review of environmental and biological levels. Science of the Total Environment, 764, 142854. https://doi.org/10.1016/j.scitotenv.2020.142854
  • [13] Wells, E. M. (2019). Bisphenol A. In Encyclopedia of Environmental Health, 424-428. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10643-8
  • [14] Lorber, M., Schecter, A., Paepke, O., Shropshire, W., Christensen, K., & Birnbaum, L. (2015). Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environment International, 77, 55-62. https://doi.org/10.1016/j.envint.2015.01.008
  • [15] Corrales, J., Kristofco, L. A., Baylor Steele, W., Yates, B. S., Breed, C. S., Spencer Williams, E., & Brooks, B. W. (2015). Global assessment of bisphenol a in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response. https://doi.org/10.1177/1559325815598308
  • [16] Maduka Ignatius, C., Ezeonu Francis, E., Neboh Emeka, E., Shu Elvis, N., & Ikekpeazu Ebele, J. (2010). BPA and environmental estrogen in potable water sources in Enugu municipality, south-east, Nigeria. Bulletin of Environmental Contamination and Toxicology, 85(5), 534-537. https://doi.org/10.1007/s00128-010-0111-0
  • [17] Leung, Y.K., Govindarajah, V., Cheong, A., Veevers, J., Song, D., Gear, R. (2017). gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk. Endocr. Relat. Cancer, 24(7), 365-378. https://doi.org/10.1530/erc-17-0006
  • [18] Tse, L. A., Lee, P. M. Y., Ho, W. M., Lam, A. T., Lee, M. K., Ng, S. S. M., Ng, C. F. (2017). Bisphenol A and other environmental risk factors for prostate cancer in Hong Kong. Environment International, 107(April), 1-7. https://doi.org/10.1016/j.envint.2017.06.012
  • [19] Zhang, K. S., Chen, H. Q., Chen, Y. S., Qiu, K. F., Zheng, X. Bin, Li, G. C., Wen, C. J. (2014). Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway. Biomedicine and Pharmacotherapy, 68(8), 1037-1043. https://doi.org/10.1016/j.biopha.2014.09.003
  • [20] Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011
  • [21] Gupta, P., Suresh, S., Jha, J. M., Banat, F., & Sillanpää, M. (2021). Sonochemical degradation of polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-01157-9
  • [22] Li, X., Yang, Y., Xu, X., Xu, C., & Hong, J. (2016). Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. Journal of Cleaner Production, 112, 1360-1367. https://doi.org/10.1016/j.jclepro.2015.05.077
  • [23] Włodarczyk-Makuła, M., & Wiśniowska, E. (2018). Removal of PAHs from Municipal Wastewater during the Third Stage of Treatment. Engineering and Protection of Environment, 21(2), 143-154. https://doi.org/10.17512/ios.2018.2.2
  • [24] USEPA. (2008). Polycyclic Aromatic Hydrocarbons (PAHs).
  • [25] Fan, Z., & Lin, L. (2019). Exposure science: Contaminant mixtures. In Encyclopedia of Environmental health, 805-815.
  • [26] Gabriele, I., Race, M., Papirio, S., & Esposito, G. (2021). Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. Journal of Environmental Management, 293(May), 112805. https://doi.org/10.1016/j.jenvman.2021.112805
  • [27] International Agency for Research on Cancer List of classifications. https://monographs.iarc.fr/list-of-classifications.
  • [28] Wang, M. C., Chen, Y. T., Chen, S. H., Chang Chien, S. W., & Sunkara, S. V. (2012). Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere, 87(3), 217-225. https://doi.org/10.1016/j.chemosphere.2011.12.063
  • [29] Liu, C., Huang, Z., Qadeer, A., Liu, Y., Qiao, X., Zheng, B., Zhao, X. (2021). The sediment-water diffusion and risk assessment of PAHs in different types of drinking water sources in the Yangtze River Delta, China. Journal of Cleaner Production, 309(May), 127456. https://doi.org/10.1016/j.jclepro.2021.127456
  • [30] Ma, L., Li, Y., Yao, L., & Du, H. (2021). Polycyclic aromatic hydrocarbons in soil-turfgrass systems in urban Shanghai: Contamination profiles, in situ bioconcentration and potential health risks. Journal of Cleaner Production, 289. https://doi.org/10.1016/j.jclepro.2021.125833
  • [31] Girardin, V., Grung, M., & Meland, S. (2020). Polycyclic aromatic hydrocarbons: bioaccumulation in dragonfly nymphs (Anisoptera), and determination of alkylated forms in sediment for an improved environmental assessment. Scientific Reports, 10(1), 1-14. https://doi.org/10.1038/s41598-020-67355-1
  • [32] Deshayes, S., Gasperi, J., Caupos, E., Partibane, C., Boudahmane, L., Saad, M., Paristech, P. (2019). Bisphenol A , alkylphenol and phtalates in road and car park runoff : from vehicle component emissions to in-situ measurement. Novatech, 4-7.
  • [33] Lamprea, K., Bressy, A., Mirande-Bret, C., Caupos, E., & Gromaire, M. C. (2018). Alkylphenol and bisphenol A contamination of urban runoff: an evaluation of the emission potentials of various construction materials and automotive supplies. Environmental Science and Pollution Research, 25(22), 21887-21900. https://doi.org/10.1007/s11356-018-2272-z
  • [34] Gbeddy, G., Goonetilleke, A., Ayoko, G. A., & Egodawatta, P. (2020). Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations. Environmental Pollution, 257, 113510. https://doi.org/10.1016/j.envpol.2019.113510
  • [35] Nguyen, T. N. T., Park, M. K., Son, J. M., & Choi, S. D. (2021). Spatial distribution and temporal variation of polycyclic aromatic hydrocarbons in runoff and surface water. Science of the Total Environment, 793, 148339. https://doi.org/10.1016/j.scitotenv.2021.148339
  • [36] Copik, J., Kudlek, E., & Dudziak, M. (2021). Removal of PAHs from Road Drainage System by Ultrasonication. Environmental Sciences Proceedings, 9(1), 4. https://doi.org/10.3390/environsciproc2021009004
  • [37] Wiest, L., Baudot, R., Lafay, F., Bonjour, E., Becouze-Lareure, C., Aubin, J. B., Vulliet, E. (2018). Priority substances in accumulated sediments in a stormwater detention basin from an industrial area. Environmental Pollution, 243(May 2019), 1669-1678. https://doi.org/10.1016/j.envpol.2018.09.138
  • [38] Vega, L. P., Soltan, J., & Peñuela, G. A. (2019). Sonochemical degradation of triclosan in water in a multifrequency reactor. Environmental Science and Pollution Research, 26(5), 4450-4461. https://doi.org/10.1007/s11356-018-1281-2
  • [39] Cameron, M., McMaster, L. D., & Britz, T. J. (2008). Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrasonics Sonochemistry, 15(6), 960-964. https://doi.org/10.1016/j.ultsonch.2008.02.012
  • [40] Huang, T., Zhang, G., Chong, S., Liu, Y., Zhang, N., Fang, S., & Zhu, J. (2017). Effects and mechanism of diclofenac degradation in aqueous solution by US/Zn0. Ultrasonics Sonochemistry, 37, 676-685. https://doi.org/10.1016/j.ultsonch.2017.02.032
  • [41] A. H. M., & M. H. D. (2005). Evaluation of Ultrasonic Technology in Removal of Algae from Surface Waters. Pakistan Journal of Biological Sciences, 8(10), 1457-1459. https://doi.org/10.3923/pjbs.2005.1457.1459
  • [42] Yakout, S. M., Hassan, M. R., Abdeltawab, A. A., & Aly, M. I. (2019). Sono-sorption efficiencies and equilibrium removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal. Journal of Cleaner Production, 234, 124-131. https://doi.org/10.1016/j.jclepro.2019.06.164
  • [43] Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990-1003. https://doi.org/10.1016/j.ultsonch.2009.09.005
  • [44] Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation - A review. Chemical Engineering Journal, 338, 599-627. https://doi.org/10.1016/j.cej.2018.01.049
  • [45] Luján-Facundo, M. J., Mendoza-Roca, J. A., Cuartas-Uribe, B., & Álvarez-Blanco, S. (2017). Membrane fouling in whey processing and subsequent cleaning with ultrasounds for a more sustainable process. Journal of Cleaner Production, 143, 804-813. https://doi.org/10.1016/j.jclepro.2016.12.043
  • [46] Fetyan, N. A. H., & Salem Attia, T. M. (2020). Water purification using ultrasound waves: application and challenges. Arab Journal of Basic and Applied Sciences, 27(1), 194-207. https://doi.org/10.1080/25765299.2020.1762294
  • [47] Borea, L., Naddeo, V., Shalaby, M. S., Zarra, T., Belgiorno, V., Abdalla, H., & Shaban, A. M. (2018). Wastewater treatment by membrane ultrafiltration enhanced with ultrasound: Effect of membrane flux and ultrasonic frequency. Ultrasonics, 83, 42-47. https://doi.org/10.1016/j.ultras.2017.06.013
  • [48] Inoue, M., Masuda, Y., Okada, F., Sakurai, A., Takahashi, I., & Sakakibara, M. (2008). Degradation of bisphenol A using sonochemical reactions. Water Research. https://doi.org/10.1016/j.watres.2007.10.006
  • [49] Pétrier, C., Torres-Palma, R., Combet, E., Sarantakos, G., Baup, S., & Pulgarin, C. (2010). Enhanced sonochemical degradation of bisphenol-A by bicarbonate ions. Ultrasonics Sonochemistry, 17(1), 111-115. https://doi.org/10.1016/j.ultsonch.2009.05.010
  • [50] Nikfar, E., Dehghani, M. H., Mahvi, A. H., Rastkari, N., Asif, M., Tyagi, I., Gupta, V. K. (2016). Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2015.08.053
  • [51] Torres, R. A., Pétrier, C., Combet, E., Carrier, M., & Pulgarin, C. (2008). Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrasonics Sonochemistry, 15(4), 605-611. https://doi.org/10.1016/j.ultsonch.2007.07.003
  • [52] Manariotis, I. D., Karapanagioti, H. K., & Chrysikopoulos, C. V. (2011). Degradation of PAHs by high frequency ultrasound. Water Research, 45(8), 2587-2594. https://doi.org/10.1016/j.watres.2011.02.009
  • [53] Ghasemi, N., Gbeddy, G., Egodawatta, P., Zare, F., & Goonetilleke, A. (2020). Removal of polycyclic aromatic hydrocarbons from wastewater using dual-mode ultrasound system. Water and Environment Journal, 34(S1), 425-434. https://doi.org/10.1111/wej.12540
  • [54] Zupanc, M., Pandur, Ž., Stepišnik Perdih, T., Stopar, D., Petkovšek, M., & Dular, M. (2019). Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry, 57(April), 147-165. https://doi.org/10.1016/j.ultsonch.2019.05.009
  • [55] Pham, T. D., Shrestha, R. A., Virkutyte, J., & Sillanpää, M. (2009). Recent studies in environmental applications of ultrasound. Canadian Journal of Civil Engineering, 36(11), 1849-1858. https://doi.org/10.1139/L09-068
  • [56] Brennen, C. E. (2015). Cavitation in medicine. Interface Focus, 5(5), 1-12. https://doi.org/10.1098/rsfs.2015.0022
  • [57] Wang, W. M., Yu, B., & Zhong, C. J. (2012). Use of ultrasonic energy in the enzymatic desizing of cotton fabric. Journal of Cleaner Production, 33, 179-182. https://doi.org/10.1016/j.jclepro.2012.04.010
  • [58] Chen, T. C., Shen, Y. H., Lee, W. J., Lin, C. C., & Wan, M. W. (2010). The study of ultrasound-assisted oxidative desulfurization process applied to the utilization of pyrolysis oil from waste tires. Journal of Cleaner Production, 18(18), 1850-1858. https://doi.org/10.1016/j.jclepro.2010.07.019
  • [59] Qu, Z., Jin, S., Wu, L., An, Y., Liu, Y., Fang, R., & Yang, J. (2019). Influence of water flow velocity on fouling removal for pipeline based on eco-friendly ultrasonic guided wave technology. Journal of Cleaner Production, 240, 118173. https://doi.org/10.1016/j.jclepro.2019.118173
  • [60] Meng, F., Wang, D., & Zhang, M. (2021). Effect of ultrasonic vibration-assisted pelleting of biomass on biochar properties. Journal of Cleaner Production, 279, 123900. https://doi.org/10.1016/j.jclepro.2020.123900
  • [61] Yasui, K. (2018). Acoustic Cavitation and Bubble Dynamics. Retrieved from http://www.springer.com/series/15634
  • [62] Lim, M., Son, Y., & Khim, J. (2014). The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A. Ultrasonics Sonochemistry, 21(6), 1976-1981. https://doi.org/10.1016/j.ultsonch.2014.03.021
  • [63] Tzanakis, I., Lebon, G. S. B., Eskin, D. G., & Pericleous, K. A. (2016). Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an advanced cavitometer. Journal of Materials Processing Technology, 229, 582-586. https://doi.org/10.1016/j.jmatprotec.2015.10.009
  • [64] Flannigan, D. J., & Suslick, K. S. (2005). Plasma formation and temperature measurement during single-bubble cavitation. Nature, 434(7029), 52-55. https://doi.org/10.1038/nature03361
  • [65] Tzanakis, I., Eskin, D. G., Georgoulas, A., & Fytanidis, D. K. (2014). Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble. Ultrasonics Sonochemistry, 21(2), 866-878. https://doi.org/10.1016/j.ultsonch.2013.10.003
  • [66] Nam-Koong, H., Schroeder, J. P., Petrick, G., & Schulz, C. (2020). Preliminary test of ultrasonically disinfection efficacy towards selected aquaculture pathogens. Aquaculture, 515(October 2019), 734592. https://doi.org/10.1016/j.aquaculture.2019.734592
  • [67] Wu, Z., Abramova, A., Nikonov, R., & Cravotto, G. (2020). Sonozonation (sonication/ozonation) for the degradation of organic contaminants - A review. Ultrasonics Sonochemistry, 68, 1-23. https://doi.org/10.1016/j.ultsonch.2020.105195
  • [68] Xiong, X., Wang, B., Zhu, W., Tian, K., & Zhang, H. (2019). A review on ultrasonic catalytic microbubbles ozonation processes: Properties, hydroxyl radicals generation pathway and potential in application. Catalysts, 9(1). https://doi.org/10.3390/catal9010010
  • [69] Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., & Maebayashi, M. (2009). Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. Ultrasonics Sonochemistry, 16(5), 655-659. https://doi.org/10.1016/j.ultsonch.2009.02.003
  • [70] Crum, L. A. (1995). Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrasonics - Sonochemistry, 2(2), 147-152. https://doi.org/10.1016/1350-4177(95)00018-2
  • [71] Gao, S., Hemar, Y., Ashokkumar, M., Paturel, S., & Lewis, G. D. (2014). Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Research, 60, 93-104. https://doi.org/10.1016/j.watres.2014.04.038
  • [72] Wang, J., Wang, Z., Vieira, C. L. Z., Wolfson, J. M., Pingtian, G., & Huang, S. (2019). Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrasonics Sonochemistry, 55, 273-278. https://doi.org/10.1016/j.ultsonch.2019.01.017
  • [73] Sancheti, S. V., Saini, C., Ambati, R., & Gogate, P. R. (2018). Synthesis of ultrasound assisted nanostuctured photocatalyst (NiO supported over CeO2) and its application for photocatalytic as well as sonocatalytic dye degradation. Catalysis Today, 300, 50-57. https://doi.org/10.1016/j.cattod.2017.02.047
  • [74] Khataee, A., Saadi, S., Vahid, B., & Joo, S. W. (2016). Sonochemical synthesis of holmium doped zinc oxide nanoparticles: Characterization, sonocatalysis of reactive orange 29 and kinetic study. Journal of Industrial and Engineering Chemistry, 35, 167-176. https://doi.org/10.1016/j.jiec.2015.12.028
  • [75] Nasseri, S., Vaezi, F., Mahvi, A., Nabizadeh, R., & Haddadi, S. (2006). Determination of the ultrasonic effectiveness in advanced wastewater treatment. Journal of Environmental Health Science & Engineering, 3(2), 109-116.
  • [76] Wang, G., Wu, W., Zhu, J. J., & Peng, D. (2021). The promise of low-intensity ultrasound: A review on sonosensitizers and sonocatalysts by ultrasonic activation for bacterial killing. Ultrasonics Sonochemistry, 79(September), 105781. https://doi.org/10.1016/j.ultsonch.2021.105781
  • [77] Kudlek, E. (2019). Influence of UV Irradiation Spectra on the Formation of Micropollutant Decomposition By-Products during Heterogeneous Photocatalysis. Proceedings, 16(1), 51. https://doi.org/10.3390/proceedings2019016051
  • [78] Davididou, K., Nelson, R., Monteagudo, J. M., Durán, A., Expósito, A. J., & Chatzisymeon, E. (2018). Photocatalytic degradation of bisphenol-A under UV-LED, blacklight and solar irradiation. Journal of Cleaner Production, 203, 13-21. https://doi.org/10.1016/j.jclepro.2018.08.247
  • [79] Rosińska, A. (2021). The influence of UV irradiation on PAHs in wastewater. Journal of Environmental Management, 293(May). https://doi.org/10.1016/j.jenvman.2021.112760
  • [80] Kudlek, E. (2019). Identification of Degradation By-Products of Selected Pesticides during Oxidation and Chlorination Processes. Ecological Chemistry and Engineering S, 26(3), 571-581. https://doi.org/10.1515/eces-2019-0042
  • [81] Kudlek, E., & Dudziak, M. (2018). Toxicity and degradation pathways of selected micropollutants in water solutions during the O3 and O3/H2O2 process. Desalination and Water Treatment, 117(December 2017), 88-100. https://doi.org/10.5004/dwt.2018.22096
  • [82] Werle, S., & Dudziak, M. (2013). Evaluation of toxicity of sewage sludge and gasification waste-products. Przem. Chem, 92, 1350-1353.
  • [83] Hsieh, C. Y., Tsai, M. H., Ryan, D. K., & Pancorbo, O. C. (2004). Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox® chronic toxicity test. Science of the Total Environment, 320(1), 37-50. https://doi.org/10.1016/S0048-9697(03)00451-0
  • [84] Mason, T. J., & Lorimer, J. P. (1988). Sonochemistry: Theory, applications and uses of ultrasound in chemistry.
  • [85] Xiao, R., Diaz-Rivera, D., & Weavers, L. K. (2013). Factors influencing pharmaceutical and personal care product degradation in aqueous solution using pulsed wave ultrasound. Industrial and Engineering Chemistry Research, 52(8), 2824-2831. https://doi.org/10.1021/ie303052a
  • [86] Leighton, T. G. (1997). The acoutic bubble, Academic Press, London, 30-150.
  • [87] Al-Juboori, R. A., Yusaf, T., Aravinthan, V., Pittaway, P. A., & Bowtell, L. (2016). Investigating the feasibility and the optimal location of pulsed ultrasound in surface water treatment schemes. Desalination and Water Treatment, 57(11), 4769-4787. https://doi.org/10.1080/19443994.2014.996771
  • [88] Gözmen, B., Oturan, M. A., Oturan, N., & Erbatur, O. (2003). Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent. Environmental Science and Technology, 37(16), 3716-3723. https://doi.org/10.1021/es034011e
  • [89] Ohko, Y., Ando, I., Niwa, C., Tatsuma, T., Yamamura, T., Nakashima, T., Fujishima, A. (2001). Degradation of bisphenol A in water by TiO2 photocatalyst. Environmental Science and Technology, 35(11), 2365-2368. https://doi.org/10.1021/es001757t
  • [90] Fukahori, S., Ichiura, H., & Kitaoka, T. (2003). Photocatalytic Decomposition of Bisphenol A in Water by Paper-like TiO2-zeolite Composites, 37(5), 243-246.
  • [91] Roelofs, D., Bicho, R. C., de Boer, T. E., Castro-Ferreira, M. P., Montagne-Wajer, K., van Gestel, C. A. M., … Amorim, M. J. B. (2016). Mechanisms of phenanthrene toxicity in the soil invertebrate, Enchytraeus crypticus. Environmental Toxicology and Chemistry, 35(11), 2713-2720. https://doi.org/10.1002/etc.3433
  • [92] Li, J., Wang, W., Moe, B., Wang, H., & Li, X. F. (2015). Chemical and toxicological characterization of halobenzoquinones, an emerging class of disinfection byproducts. Chemical Research in Toxicology, 28(3), 306-318. https://doi.org/10.1021/tx500494r
  • [93] Whysner, J., Reddy, M. V., Ross, P. M., Mohan, M., & Lax, E. A. (2004). Genotoxicity of benzene and its metabolites. Mutation Research - Reviews in Mutation Research, 566(2), 99-130. https://doi.org/10.1016/S1383-5742(03)00053-X
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f037f5d-0ea7-4614-b478-3f6b8a6eede5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.