Identyfikatory
Warianty tytułu
Selected applications of graphene in aerospace industry
Języki publikacji
Abstrakty
Obecnie nanomateriały coraz częściej znajdują się w obszarze zainteresowań producentów sprzętu kosmicznego oraz lotniczego. Szeroko zakrojone badania nad użyciem grafenu i nanorurek węglowych uwidaczniają coraz szersze zastosowania tych materiałów. Przy opracowywaniu coraz lżejszych, bardziej wytrzymałych na obciążenia mechaniczne jak i termiczne struktur, nanocząstki są obiecującym elementem, pozwalającym na korzystne ich modyfikacje.
Currently, nanomaterials are in increasing area of interests for manufacturers of aerospace equipment. Extensive research into the use of graphene carbon or nanotubes highlight the potential applications of these materials. When developing lighter, more resistant to mechanical and thermal loads structures, nanoparticles are promising element, allowing for beneficial modifications.
Czasopismo
Rocznik
Strony
160--166
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Instytut Lotnictwa, Centrum Technologii Kosmicznych
autor
- Instytut Lotnictwa, Centrum Technologii Kosmicznych
Bibliografia
- [1] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties and Applications, Adv. Mater, 22, 3906-3924.
- [2] Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., Ruoff, R. S. (2006). Graphene-based composite materials, Nature, 442, 282-286.
- [3] Yue-Wen, Liu, et al. (2013). Facile and straightforward synthesis of superparamagnetic reduced graphene oxide–Fe3O4 hybrid composite by a solvothermal reaction, Nanotechnology, 24, 025604, pp. 10.
- [4] Ranjbartoreh, Ali, R., et al. (2011). Advanced mechanical properties of graphene paper, J. Appl. Phys., 109, 014306.
- [5] Yilun, L., et al. (2012). Mechanical properties of graphene papers, J. Mech. Phys. Solids 60, 591-605.
- [6] Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z., Koratkar N. (2009). Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, 3, 12, pp. 3884-3890.
- [7] Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., Lee, J. H. (2010). Recent advances in graphene based polymer composites, Progress in Polymer Science, 35, 1350-1375.
- [8] Rafiee, M. A., Rafiee, J., Yu, Z. Z., Koratkar, N. (2009). Buckling resistant graphene nanocomposites, Applied Physics Letters 95, 223103.
- [9] Rafiee, M. A., Rafiee, J., Srivastava, I., Wang, z., Song, H., Yu, Z. Z., Koratkar, N. (2010). Fracture and Fatigue in Graphene Nanocomposites, Small, 2, 179-83.
- [10] Shin, M. K., et al. (2012). Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes, Nat Commun, 3, 650.
- [11] Yu, A., Ramesh, P., Itkis, M. E., Elena, B., Haddon, R. C. (2007). Graphite nanoplatelet-epoxy composite thermal interface materials, J Phys. Chem. C, 111, 7565-9.
- [12] Nemes-Incze, P., Osvatha, Z., Kamarasb, K., Biro, L. P. (2008). Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon, 46, 1435-42.
- [13] Goyal, V., Balandin, A. A. (2012). Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials, Appl. Phys. Lett. 100, 073113.
- [14] Compton, O. C., et al. (2010). Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv. Mater., 22, 4759.
- [15] Zhang, W., et al. (2013). Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance, J. Mater. Sci. 48, 2416-2423.
- [16] Tongwu, J., et al. (2013). Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites, Composites Science and Technology 79, 115-125.
- [17] Eswaraiah, V., Balasubramaniam, K., Ramaprabhu, S. (2011). Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring, J. Mater. Chem., 21, 12626-12628.
- [18] Alamusi, N., H., Fukunaga, H., Atobe, S., Liu, Y., Li, J. (2011). Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites, Sensors, 11, 1691-1793.
- [19] Sakhaee-Pour, A., Ahmadiana, M. T., Vafai, A. (2008). Potential application of single-layered graphene sheet as strain sensor, Solid State communications 147, 336-340.
- [20] Eswaraiah, V., Balasubramaniam, K., Ramaprabhu, S. (2011). Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring, J. Mater. Chem., 21, 12626-12628.
- [21] Tamburrano, A., et al. (2013). The piezoresistive effect in graphenebased polymeric composites, Nanotechnology, 22, 24 (46), 465702.
- [22] Halperin, B. I., Feng, S., Sen, P. N. (1985). Differences between lattice and continuum percolation transport exponents. Phys. Rev. Lett., 54, 2391-4.
- [23] Hwang, S. H., et al. (2013). Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube-graphene nanoplatelet hybrid sheets, Smart Mater. Struct., 22, 015013 (pp. 9).
- [24] Forrest, S. R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428:911.
- [25] Chen, Z., Cotterell, B., Wang, W., Guenther, E., Chua, S. J. (2001). A mechanical assessment of flexible optoelectronic devices. Thin Solid Films, 394:201.
- [26] Yin, Z. y., Wu, S. X., zhou, X. z., huang, X., zhang, Q. c., Boey, F., et al. (2010). Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small, 6:307.
- [27] Yin, Z. Y., Sun, S. Y., Salim, T., Wu, S. X., Huang, X. A., He, Q. Y., et al. (2010). Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano, 4:5263.
- [28] Li, S. S., Tu, K. H., Lin, C. C., Chen, C. W., Chhowalla, M. (2010). Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 4:3169.
- [29] Liu, Q., Liu, Z. F., Zhong, X. Y., Yang, L. Y., Zhang, N., Pan, G. L., et al. (2009). Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater., 19:894.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f020f2a-0d62-4d32-850b-fa189ebacf61