Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The growth of the seafood industry, particularly aquaculture, will play a crucial role in enhancing global food security and driving economic growth, especially in nations such as Vietnam, where it is supporting the livelihoods of millions. However, the rapid expansion of aquaculture has brought about environmental issues, notably the discharge of nutrient-rich wastewater. While microbial treatments are well-established in wastewater management, the application of purple photosynthetic bacteria (PPB) in saline aquaculture systems remains underexplored. This study isolated and characterized a novel purple photosynthetic bacterial strain, LA5.1, from Lap An Lagoon in Vietnam. Strain LA5.1 exhibited robust growth across a salinity range of 0 to 30‰ and reduced the chemical oxygen demand (COD) by 60–80% within six days, even when the initial COD concentration was as high as 800 mg/L. Additionally, the strain efficiently removed up to 80% of total ammonia nitrogen (TAN) in saline environments, demonstrating its robust potential in bioremediation. A phylogenetic analysis of the 16S rRNA gene confirmed the identity of the strain as Rhodopseudomonas julia. These findings indicate that R. julia LA5.1 is a promising candidate for sustainable aquaculture wastewater treatment systems, offering significant potential for large-scale applications in addressing the environmental challenges associated with intensive aquaculture practices.
Czasopismo
Rocznik
Tom
Strony
286--296
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Faculty of Environmental Science, University of Sciences, Hue University, 77 Nguyen Hue Str., Hue City 470000, Vietnam
- Laboratory of Environmental Bio-Chemistry, University of Sciences, Hue University, 77 Nguyen Hue Str., Hue City 470000, Vietnam
autor
- Faculty of Environmental Science, University of Sciences, Hue University, 77 Nguyen Hue Str., Hue City 470000, Vietnam
autor
- Faculty of Environmental Science, University of Sciences, Hue University, 77 Nguyen Hue Str., Hue City 470000, Vietnam
autor
- Faculty of Biology, University of Sciences, Hue University, 77 Nguyen Hue Str., Hue City 470000, Vietnam Hoang Quang Tan
autor
- Institute of Biotechnology, Hue University, Nguyen Dinh Tu Str., Hue City 470000, Vietnam
autor
- Laboratory of Environmental Bio-Chemistry, University of Sciences, Hue University, 77 Nguyen Hue Str., Hue City 470000, Vietnam
Bibliografia
- 1. APHA. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, D.C.: American Public Health Association.
- 2. Azad S. A. (2002). Phototrophic bacteria as feed supplement for rearing Penaeus monodon larvae. Journal of the World Aquaculture Society, 33(2), 158–168. https://doi.org/10.1111/j.1749-7345.2002.tb00490.x
- 3. Cao T. T. T., Trinh T., Tran D. T., Vu D. V., & Tran A. T. (2021). Assessment of the environmental carrying capacity of pollutants in Tam Giang-Cau Hai Lagoon (Viet Nam) and solutions for the environment protection of the lagoon. Science of the Total Environment, 762, 143130. https://doi.org/10.1016/j.scitotenv.2020.143130
- 4. Chen J., Wei J., Ma C., Yang Z., Li Z., Yang X., Wang M., Zhang H., Hu J., & Zhang C. (2020). Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirements. Environment International, 137, 105417. https://doi.org/10.1016/j.envint.2019.105417
- 5. Hajdu K., Szabó T., Sarrai A. E., Rinyu L., & Nagy L. (2017). Functional nanohybrid materials from photosynthetic reaction center proteins. International Journal of Photoenergy, 1, 1–14. https://doi.org/10.1155/2017/9128291
- 6. Hoang T. Q., Tran T. L., Truong T. H. H., Pham T. H. Y., Tran Q. K. V., Ho T. T., Mac N. B., Nguyen K. H. S., Nguyen Q. L., Nguyen D. Q. T. (2020). Genetic diversity and toxic genes analysis of Vibrio spp. isolated from white leg shrimp and marine fishes cultured in Tam Giang lagoon in Thua Thien Hue province, Vietnam. Indian journal of Science and Technology, 13(13), 1412–1422. https://doi.org/10.17485/ijst/v13i13.161
- 7. Huang L., Li M., Ngo H. H., Guo W., Xu W., Du B., Wei Q., & Wei D. (2018). Spectroscopic characteristics of dissolved organic matter from aquaculture wastewater and its interaction mechanism to chlorinated phenol compounds. Journal of Molecular Liquids, 263, 422–427. https://doi.org/10.1016/j.molliq.2018.05.025
- 8. Hülsen T., & Batstone D. J. (2019). Saline wastewater treatment with purple phototrophic bacteria. Water Research, 160, 259–267. https://doi.org/10.1016/j.watres.2019.05.060
- 9. Hülsen T., Batstone D. J., & Keller J. (2014). Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Research, 50, 18–26. https://doi.org/10.1016/j.watres.2013.10.051
- 10. Hülsen T., Hsieh K., Tait S., Barry E. M., Puyol D., & Batstone D. J. (2018). White and infrared light continuous photobioreactors for resource recovery from poultry processing wastewater: A comparison. Water Research, 144, 665–676. https://doi.org/10.1016/j.watres.2018.07.040
- 11. Imhoff J. F. (2005). Genus Rhodopseudomonas. In: Bergey’s Manual of Systematic Bacteriology (2nd ed., 2, C, 473–476). New York, NY: Springer.
- 12. Jiao Y., Kappler A., Croal L. R., & Newman D. K. (2005). Isolation and characterisation of a genetically tractable photoautotrophic Fe(II)-oxidising bacterium, Rhodopseudomonas palustris strain TIE-1. Applied and Environmental Microbiology, 71(8), 4487–4496. https://doi.org/10.1128/AEM.71.8.4487-4496.2005
- 13. Kim M. K., Choi K. M., Yin C. R., Lee K. Y., Im W. T., Ju H. L., & Lee S. T. (2004). Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnology Letters, 26, 819–822. https://doi.org/10.1023/B:BILE.0000025884.50198.67
- 14. Liu S., Shen X., Daigger G. T., Zhang G., Kang J., Song G., Li G., & Yang G. (2024). Mechanism regulation, production, and potential of high-value substances in wastewater treatment by immobilized photosynthetic bacteria: A review. Journal of Water Process Engineering, 58, 104770. https://doi.org/10.1016/j.jwpe.2023.104770
- 15. Liu X., Wang Y., Liu H., Zhang Y., Zhou Q., Wen X., Guo W., & Zhang Z. (2024). A systematic review on aquaculture wastewater: Pollutants, impacts, and treatment technology. Environmental Research, 262, 119793. https://doi.org/10.1016/j.envres.2024.119793
- 16. Luo W., Deng X., Zeng W., & Zheng D. (2012). Treatment of wastewater from shrimp farms using a combination of fish, photosynthetic bacteria, and vegetation. Desalination and Water Treatment, 47, 221–227. https://doi.org/10.1080/19443994.2012.696394
- 17. Meng F., Yang A., Zhang G., Zhang P., & Ye J. (2018). Benchmark study of photosynthetic bacteria bio-conversion of wastewater: Carbon source range, fundamental kinetics of substrate degradation and cell proliferation. Bioresource Technology Reports, 1, 31–38. https://doi.org/10.1016/j.biteb.2018.02.003
- 18. Montiel-Corona V., Buitrón G. (2022). Polyhydroxybutyrate production in one-stage by purple phototrophic bacteria: Influence of alkaline pH, ethanol, and C/N ratios. Biochemical Engineering Journal, 189, 108715. https://doi.org/10.1016/j.bej.2022.108715
- 19. Nguyen V. C. 2017. An overview of agricultural pollution in Vietnam: The aquaculture sector. Prepared for the World Bank, Washington, D.C.
- 20. Nguyen T. M. N., Hoang P. H., Dong V. Q., Nguyen N. H. T., & Le T. N. C. (2020). Degradation of naphthalene and pyrene by several biofilm-forming photosynthetic purple bacterial strains. Journal of Biotechnology, 18(3), 561–570. https://doi.org/10.15625/1811-4989/18/3/15322
- 21. Ogunfowora L. A., Iwuozor K. O., Ighalo J. O., & Igwegbe C. A. (2021). Trends in the treatment of aquaculture effluents using nanotechnology. Cleaner Materials, 2, 100024. https://doi.org/10.1016/j.clema.2021.100024
- 22. Panwichian S., Kantachote D., Wittayaweerasak B., & Mallavarapu M. (2010). Isolation of purple nonsulfur bacteria for the removal of heavy metals and sodium from contaminated shrimp ponds. Electronic Journal of Biotechnology, 13(4). https://doi.org/10.2225/vol13-issue4-fulltext-8
- 23. Prachanurak P., Chiemchaisri C., Chiemchaisri W., & Yamamoto K. (2014). Biomass production from fermented starch wastewater in a photo-bioreactor with internal overflow recirculation. Bioresource Technology, 165, 129–136. https://doi.org/10.1016/j.biortech.2014.03.119
- 24. Rao P. S. S., Karunasagar I., Otta S. K., & Karunasagar I. (2000). Incidence of bacteria involved in nitrogen and sulphur cycles in tropical shrimp culture ponds. Aquaculture International, 8(5), 463–472.
- 25. Reed D. W., & Gerald A. P. (1972). Characterization of the pigments in reaction center preparations from Rhodopseudomonas spheroides. The Journal of Biological Chemistry, 247(22), 7148–7152. https://doi.org/10.1016/S0021-9258(19)44606-1
- 26. Shaikh S., Rashid N., McKay G., & Mackey H. R. (2024). Resource recovery through bioremediation of fuel-synthesis wastewater in a biofilm photobioreactor using purple non-sulfur bacteria: A circular bioeconomy approach. Chemical Engineering Journal Advances, 19, 100614. https://doi.org/10.1016/j.ceja.2024.100614
- 27. Shapawi R., Ting T. E., & Al-Azad S. (2012). Inclusion of purple non-sulfur bacteria biomass in formulated feed to promote growth, feed conversion ratio, and survival of Asian seabass (Lates calcarifer) juveniles. Journal of Fisheries and Aquatic Science, 7(6), 475–480. https://doi.org/10.3923/jfas.2012.475.480
- 28. Tarabas O. V., Hnatush S. O., Halushka A. A., & Moroz O. M. (2018). Pigments of Rhodopseudomonas yavorovii IMV B-7620. Microbiology & Biotechnology, 1, 57–65. https://doi.org/10.18524/2307-4663.2018.1(41).120468
- 29. Tan C. W. J., Gouramanis C., Pham T. D., Hoang D. Q., & Switzer A. D. (2021). Ostracods as pollution indicators in Lap An Lagoon, central Vietnam. Environmental Pollution, 278, 116762. https://doi.org/10.1016/j.envpol.2021.116762
- 30. Yang A., Zhang G., Meng F., Lu P., Wang X., & Peng M. (2017). Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment. Bioresource Technology, 245, 1277–1281. https://doi.org/10.1016/j.biortech.2017.08.109
- 31. Zhang X., Shu M., Wang Y., Fu L., Li W., Deng B., Liang Q., Shen W. (2014). Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture. World Journal of Microbiology and Biotechnology, 30, 2523 ̶ 2531. https://doi.org/10.1007/s11274-014-1677-1
- 32. Zhou Q., Zhang P., & Zhang G. (2014). Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity. Bioresource Technology, 171, 330–335. https://doi.org/10.1016/j.biortech.2014.08.088
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f014185-5d98-4407-9461-a811d518ceed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.