PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer-aided diagnosis of clinically significant prostate cancer from MRI images using sparse autoencoder and random forest classifier

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel method to diagnose clinically significant prostate cancer (PCa) using Multi-parametric Magnetic Resonance Imaging (mpMRI) biomarkers in a highly imbalanced dataset is investigated in this paper. Transaxial T2 Weighted (T2W), Apparent Diffusion Coefficient (ADC) and high B-Value (BVAL) Diffusion-Weighted (DW) images obtained from PROSTATEx 2016 challenge dataset publicly available in TCIA (The Cancer Imaging Archive) is used for this study. High-level features are extracted using a single layer Sparse Autoencoder (SAE). Synthetic Minority Oversampling Technique (SMOTE), Weka Resample algorithm and Adaptive Synthetic (ADASYN) sampling approach are explored to solve the class-imbalance problem. The performance of various classifiers are also investigated and it was found that the data augmented using ADASYN followed by classification using random forest classifier achieved the best performance. It achieved an area under ROC curve of 0.979. It also reached a Cohen's kappa score of 0.873, an accuracy of 93.65% and F-Measure of 0.94 in distinguishing clinically significant PCa from indolent Pca.
Twórcy
autor
  • Department of Computer Science, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
autor
  • Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India
Bibliografia
  • [1] Siegel RL, Miller KD, Jemal A. Cancer statistics 2016. CA: Cancer J Clin 2016;66(1):7–30.
  • [2] Smith RA, Andrews K, Brooks D, DeSantis CE, Fedewa SA, Lortet-Tieulent J, et al. Cancer screening in the United States 2016: a review of current American Cancer Society guidelines and current issues in cancer screening. CA: Cancer J Clin 2016;66(2):95–114.
  • [3] Loeb S, Vellekoop A, Ahmed HU, Catto J, Emberton M, Nam R, et al. Systematic review of complications of prostate biopsy. Eur Urol 2013;64(6):876–92.
  • [4] Abraham NE, Mendhiratta N, Taneja SS. Patterns of repeat prostate biopsy in contemporary clinical practice. J Urol 2015;193(4):1178–84.
  • [5] Ahmed HU, Bosaily AE-S, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389(10071):815–22.
  • [6] Vos PC, Hambrock T, Hulsbergen-van de Kaa CA, Fütterer JJ, Barentsz JO, Huisman HJ. Computerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI. Med Phys 2008;35(3):888–99.
  • [7] Niaf E, Rouvière O, Mège-Lechevallier F, Bratan F, Lartizien C. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys Med Biol 2012;57(12):3833.
  • [8] Liu P, Wang S, Turkbey B, Grant K, Pinto P, Choyke P, et al. A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels. Proc SPIE, vol. 8670. 2013. pp. 86701G–6G.
  • [9] Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci USA 2015;112(46): E6265–73.
  • [10] Reda I, Shalaby A, El-Ghar MA, Khalifa F, Elmogy M, Aboulfotouh A, et al. A new nmf-autoencoder based cad system for early diagnosis of prostate cancer. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE; 2016. p. 1237–40.
  • [11] Reda I, Shalaby A, Khalifa F, Elmogy M, Aboulfotouh A, El-Ghar MA, et al. Computer-aided diagnostic tool for early detection of prostate cancer. 2016 IEEE International Conference on Image Processing (ICIP). IEEE; 2016. p. 2668–72.
  • [12] Reda I, Shalaby A, Elmogy M, Elfotouh AA, Khalifa F, El-Ghar MA, et al. A comprehensive non-invasive framework for diagnosing prostate cancer. Comput Biol Med 2017;81:148–58.
  • [13] Farag AA, El-Baz AS, Gimel'farb G. Precise segmentation of multimodal images. IEEE Trans Image Process 2006;15 (4):952–68.
  • [14] Reda I, Khalil A, Elmogy M, Abou El-Fetouh A, Shalaby A, Abou El-Ghar M, et al. Deep learning role in early diagnosis of prostate cancer. Technol Cancer Res Treat 2018;17. 1533034618775530.
  • [15] Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Computer-aided detection of prostate cancer in MRI. IEEE Trans Med Imaging 2014;33(5):1083–92.
  • [16] Le MH, Chen J, Wang L, Wang Z, Liu W, Cheng K-TT, et al. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol 2017;62(16):6497.
  • [17] Liu S, Zheng H, Feng Y, Li W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI; 2017, arXiv:1703.04078.
  • [18] Seah JC, Tang JS, Kitchen A. Detection of prostate cancer on multiparametric MRI – a ProstateX challenge runner up. Proc of SPIE, vol. 10134; 2017. 1013429–1.
  • [19] Chen Q, Xu X, Hu S, Li X, Zou Q, Li Y. A transfer learning approach for classification of clinical significant prostate cancers from mpMRI scans. SPIE Medical Imaging. International Society for Optics and Photonics; 2017. p. 101344F.
  • [20] Carter HB, Partin AW, Walsh PC, Trock BJ, Veltri RW, Nelson WG, et al. Gleason score 6 adenocarcinoma: should it be labeled as cancer? J Clin Oncol 2012;30(35):4294–6.
  • [21] Irshad S, Bansal M, Castillo-Martin M, Zheng T, Aytes A, Wenske S, et al. A molecular signature predictive of indolent prostate cancer. Sci Transl Med 2013;5(202). 202ra122-202ra122.
  • [22] Kitchen A, Seah J. Support vector machines for prostate lesion classification. Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134. International Society for Optics and Photonics; 2017. p. 1013427.
  • [23] Mehrtash A, Sedghi A, Ghafoorian M, Taghipour M, Tempany CM, Wells WM, et al. Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134. International Society for Optics and Photonics; 2017. p. 101342A.
  • [24] Liao S, Gao Y, Oto A, Shen D. Representation learning: a unified deep learning framework for automatic prostate MR segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2013. p. 254–61.
  • [25] Zhao C, Wan X, Zhao G, Cui B, Liu W, Qi B. Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest. Eur J Remote Sens 2017;50(1):47–63.
  • [26] Maji D, Santara A, Ghosh S, Sheet D, Mitra P. Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 3029–32.
  • [27] Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013;26(6):1045–57.
  • [28] Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Cancer imaging archive wiki; 2017. http://dx.doi.org/10.7937/K9TCIA.2017.MURS5CL.
  • [29] Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012;22(4):746–57.
  • [30] Puech P, Sufana-Iancu A, Renard B, Lemaitre L. Prostate MRI: can we do without DCE sequences in 2013? Diagn Interv Imaging 2013;94(12):1299–311.
  • [31] A. Ng, Sparse autoencoder, http://web.stanford.edu/class/archive/cs/cs294a/cs294a.1104/sparseAutoencoder.pdf [June accessed on 22.10.17].
  • [32] A. Ng, Sparse autoencoder, https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf [June 2011, accessed on 22.10.17].
  • [33] Rahman MM, Davis D. Addressing the class imbalance problem in medical datasets. Int J Mach Learn Comput 2013;3(2):224.
  • [34] Lemaitre G, Martí R, Rastgoo M, Mériaudeau F. Computeraided detection for prostate cancer detection based on multi-parametric magnetic resonance imaging. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2017. p. 3138–41.
  • [35] Karabulut EM, Ibrikci T. Effective automated prediction of vertebral column pathologies based on logistic model tree with smote preprocessing. J Med Syst 2014;38(5):50.
  • [36] He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008 (IEEE World Congress on Computational Intelligence). IEEE; 2008. p. 1322–8.
  • [37] Koh JE, Acharya UR, Hagiwara Y, Raghavendra U, Tan JH, Sree SV, et al. Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Comput Biol Med 2017;84:89–97.
  • [38] Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al. Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features. Comput Biol Med 2018;94:11–8.
  • [39] Acharya UR, Sudarshan VK, Rong SQ, Tan Z, Lim CM, Koh JE, et al. Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Comput Biol Med 2017;85:33–42.
  • [40] Chaudhary A, Kolhe S, Kamal R. A hybrid ensemble for classification in multiclass datasets: an application to oilseed disease dataset. Comput Electron Agric 2016;124:65–72.
  • [41] Correa G, Assuncao PA, Agostini LV, da Silva Cruz LA. Fast HEVC encoding decisions using data mining. IEEE Trans Circuits Syst Video Technol 2015;25(4):660–73.
  • [42] Briones N, Dinu V. Data mining of high density genomic variant data for prediction of Alzheimer's disease risk. BMC Med Genet 2012;13(1):7.
  • [43] Breiman L. Random forests. Mach Learn 2001;45(1):5–32.
  • [44] Ho TK. Random decision forests. Proceedings of the Third International Conference on Document Analysis and Recognition, 1995, vol. 1. IEEE; 1995. p. 278–82.
  • [45] Biau G, Devroye L, Lugosi G. Consistency of random forests and other averaging classifiers. J Mach Learn Res 2008;9 (Sep):2015–33.
  • [46] Giannini V, Mazzetti S, Vignati A, Russo F, Bollito E, Porpiglia F, et al. A fully automatic computer aided diagnosis system for peripheral zone prostate cancer detection using multi-parametric magnetic resonance imaging. Comput Med Imaging Graph 2015;46:219–26.
  • [47] Trigui R, Mitéran J, Walker PM, Sellami L, Hamida AB. Automatic classification and localization of prostate cancer using multi-parametric MRI/MRS. Biomed Signal Process Control 2017;31:189–98.
  • [48] Ham J, Chen Y, Crawford MM, Ghosh J. Investigation of the randomforest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 2005;43(3):492–501.
  • [49] Bosch A, Zisserman A, Munoz X. Image classification using random forests and ferns. IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007. IEEE; 2007. p. 1–8.
  • [50] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD Explor Newslett 2009;11(1):10–8.
  • [51] Fatourechi M, Ward RK, Mason SG, Huggins J, Schlögl A, Birch GE. Comparison of evaluation metrics in classification applications with imbalanced datasets. Seventh International Conference on Machine Learning and Applications, 2008. ICMLA'08. IEEE; 2008. p. 777–82.
  • [52] Folorunso S, Adeyemo A. Alleviating classification problem of imbalanced dataset. Afr J Comp ICT 2013;6(2):137–44.
  • [53] Train an autoencoder – matlab trainautoencoder; 2018, https://in.mathworks.com/help/nnet/ref/trainautoencoder. html [accessed on 07.02.18].
  • [54] Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size required for classification performance. BMC Med Inform Decis Mak 2012;12(1):8.
  • [55] Dobbin KK, Zhao Y, Simon RM. How large a training set is needed to develop a classifier for microarray data? Clin Cancer Res 2008;14(1):108–14.
  • [56] Lemaître G, Martí R, Freixenet J, Vilanova JC, Walker PM, Meriaudeau F. Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput Biol Med 2015;60:8–31.
  • [57] Rampun A, Zheng L, Malcolm P, Tiddeman B, Zwiggelaar R. Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone. Phys Med Biol 2016;61(13):4796.
  • [58] Rampun A, Chen Z, Malcolm P, Tiddeman B, Zwiggelaar R. Computer-aided diagnosis: detection and localization of prostate cancer within the peripheral zone. Int J Numer Methods Biomed Eng 2016;32(5).
  • [59] Soylu FN, Peng Y, Jiang Y, Wang S, Schmid-Tannwald C, Sethi I, et al. Seminal vesicle invasion in prostate cancer: evaluation by using multiparametric endorectal MR imaging. Radiology 2013;267(3):797–806.
  • [60] Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, et al. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 2014;18(2):359–73.
  • [61] Yang X, Liu C, Wang Z, Yang J, Le Min H, Wang L, et al. Cotrained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Med Image Anal 2017;42:212–27.
  • [62] Firjani A, Elnakib A, Khalifa F, Gimel'farb G, El-Ghar MA, Elmaghraby A, et al. A diffusion-weighted imaging based diagnostic system for early detection of prostate cancer. J Biomed Sci Eng 2013;6(03):346.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ef9c915-acd4-4d32-aef9-8286fea4d839
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.