PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Matched-field Source Localization with a Mobile Short Horizontal Linear Array in Offshore Shallow Water

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Passive source localization in shallow water has always been an important and challenging problem. Implementing scientific research, surveying, and monitoring using a short, less than ten meter long, horizontal linear array has received considerable attention in the recent years. The short array can be conveniently placed on autonomous underwater vehicles and deployed for adaptive spatial sampling. However, it is usually difficult to obtain a sufficient spatial gain for localizing long-range sources due to its limited physical size. To address this problem, a localization approach is proposed which is based on matched-field processing of the likelihood of the passive source localization in shallow water, as well as inter-position processing for the improved localization performance and the enhanced stability of the estimation process. The ability of the proposed approach is examined through the two-dimensional synthetic test cases which involves ocean environmental mismatch and position errors of the short array. The presented results illustrate the localization performance for various source locations at different signal- to-noise ratios and demonstrate the build up over time of the positional parameters of the estimated source as the short array moves at a low speed along a straight line at a certain depth.
Rocznik
Strony
105--113
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Department of Instrument Science and Technology, College of Mechatronics and Automation National University of Defense Technology 47, Yanwachi Street, Changsha City, Hunan Province, 410073, P. R. China
autor
  • Department of Instrument Science and Technology, College of Mechatronics and Automation National University of Defense Technology 47, Yanwachi Street, Changsha City, Hunan Province, 410073, P. R. China
autor
  • Department of Instrument Science and Technology, College of Mechatronics and Automation National University of Defense Technology 47, Yanwachi Street, Changsha City, Hunan Province, 410073, P. R. China
autor
  • Department of Instrument Science and Technology, College of Mechatronics and Automation National University of Defense Technology 47, Yanwachi Street, Changsha City, Hunan Province, 410073, P. R. China
Bibliografia
  • 1. Autrey S. W. (1988), Passive synthetic arrays, Journal of the Acoustical Society of America, 84, 592-598.
  • 2. Baggeroer A. B., Kuperman W. A., Mikhalevsky P. N. (1993), An overview of matched field methods in ocean acoustics, IEEE Journal of Oceanic Engineering, 18, 401-424.
  • 3. Del Balzo D. R., Feuillade C., Rowe M. M. (1988), Effects of water-depth mismatch on matched field localization in shallow water, Journal of the Acoustical Society of America, 83, 2180-2185.
  • 4. Bernecky W. R., Krzych M. J. (2008), Point source localization sonar system and method, Patent Application Publication, United States.
  • 5. Collins M. D. (1995), User’s guide for RAM versons 1.0 and 1.0p, Naval Research Lab, Washington, DC.
  • 6. Cox H., Zeskind R. M., Owen M. M. (1987), Robust adaptive beam forming, IEEE Transactions on Acoustics, 35, 1365-1376.
  • 7. Debever C. (2009), Study of how environmental fluctuations influence the coherence of acoustic signals, DTIC Document.
  • 8. Debever C., Kuperman W. A. (2007), Robust matched-field processing using a coherent broadband white noise constraint processor, Journal of the Acoustical Society of America, 122, 1979-1986.
  • 9. Ehlers F., Fox W., Maiwald D., Ulmke M., Wood G. (2010), Advances in signal processing for maritime applications, EURASIP Journal on Advances in Signal Processing, 2010: 1-5.
  • 10. Fernandez J. E., Matthew A. D., Cook D. A., Stroud J. S. (2004), Synthetic aperture sonar development for autonomous underwater vehicles, OCEANS, 4, 1927-1933.
  • 11. Fialkowski L. T., Collins M. D., Perkins J. S. (1997), Source localization in noisy and uncertain ocean environments, Journal of the Acoustical Society of America, 101, 3539-3545.
  • 12. Hamson R. M., Heitmeyer R. M. (1989), Environmental and system effects on source localization in shallow water by the matched-field processing of a vertical array, Journal of the Acoustical Society of America, 86, 1950-1959.
  • 13. Maranda B. H. (2008), Passive sonar, [in:] Handbook of signal processing in acoustics, Havelock D., Kuwano S., Vorländer M. [Eds.], Springer, New York.
  • 14. Hodges R. P. (2010), Underwater acoustics: Analysis, design and performance of sonar, Wiley, West Sussex.
  • 15. Ince L., Sezen B., Saridogan E., Ince H. (2009), An evolutionary computing approach for the target motion analysis (TMA) problem for underwater tracks, Expert Systems with Applications, 36, 3866-3879.
  • 16. Jensen F. B., Kuperman W. A., Porter M. B., Schmidt H. (2011), Computational ocean acoustics, Springer, New York.
  • 17. Jesus S. M., Soares C. (2001), Broadband MFP: coherent vs. incoherent, OCEANS, 2, 776-781.
  • 18. Kim K., Seong W., Lee K. (2010), Adaptive surface interference suppression for matched-mode source localization, IEEE Journal of Oceanic Engineering; 35, 120-130.
  • 19. Lee Y. P., Mikhalevsky P., Freese H., Hanna J. (1993), Robust adaptive matched-field processing, OCEANS, 3, 387-392.
  • 20. Millard N. W. (2003), Multidisciplinary ocean science applications of an AUV: the auto sub science missions programme, [in:] Technology and Applications of Autonomous Underwater Vehicles, Griffiths G. [Ed.], Taylor & Francis, London and New York.
  • 21. Porter M. B., Tolstoy A. (1994), The matched-field processing benchmark problems, Journal of the Acoustical Society of America, 2, 161-185.
  • 22. Smith G. B., Chandler H. A., Feuillade C. (1993), Performance stability of high-resolution matched-field processors to sound-speed mismatch in a shallow-water environment, Journal of the Acoustical Society of America, 93, 2617-2626.
  • 23. Soares C., Jesus S. M. (2003), Broadband matched field processing: coherent and incoherent approaches, Journal of the Acoustical Society of America, 113, 2587-2598.
  • 24. Stryczniewicz L. (2006), The methods of inversion and the maximum likelihood estimation in acoustic tests of industrial sources in the environment, Archives of Acoustics, 31, 4S, 295-301.
  • 25. Tantum S. L., Nolte L. W. (2000), On array design for matched-field processing, Journal of the Acoustical Society of America, 107, 2101-2111.
  • 26. Tollefsen D., Dosso S.E. (2009), Three-dimensional source tracking in an uncertain environment, Journal of the Acoustical Society of America, 125, 2909-2917.
  • 27. Tolstoy A. (1993), Matched field processing for under water acoustics, World Scientific, Singapore.
  • 28. Williams R., Harris B. (1992), Passive acoustic synthetic aperture processing techniques, IEEE Journal of Oceanic Engineering, 17, 8-15.
  • 29. Wilson J. H., Veenhuis R. S. (1997), Shallow water beamforming with small aperture, horizontal, towed arrays, Journal of the Acoustical Society of America, 101, 384-394.
  • 30. Xudong Y., Jianguo H., Qunfei Z., Qi T. (2007), Study on the long-distance target apperception techniques for underwater vehicles, Journal of Systems Engineering and Electronics, 18, 484-490.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ef8ce96-620a-44b9-94bc-ddc34ff3cc48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.