PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration analysis of a turbocharger with an additively manufactured compressor wheel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the vibration analysis of a turbocharger, whose compression wheel was manufactured using a high-precision additive manufacturing technology. Currently, there are advance studies around the world for the development of parts of innovative fluid-flow machines using additive manufacturing techniques. The experimental research was carried out under conditions of reduced flow temperatures. The tests and the analysis were performed on a wheel manufactured using a 3D printing technology and on a conventionally used aluminium wheel. Apart from an FFT analysis of the vibration signal during machine operation, a machine run-up test was conducted (up to a speed of 105,000 rpm). The results showed the positive impact of the use of a plastic wheel on the dynamics of the system at a certain speed range, which might contribute to the development of a new method to optimise the geometry of flow systems in small high-speed turbomachines. A modified automotive turbocharger was subjected to experiments on a test stand.
Rocznik
Tom
Strony
05--17
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdansk, Poland
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdansk, Poland
Bibliografia
  • 1. Javaid Mohd, Abid Haleem. 2018. “Additive manufacturing applications in medical cases: A literature based review”. Alexandria Journal of Medicine 54(4): 411-422. DOI: 10.1016/j.ajme.2017.09.
  • 2. Yakout Mostafa, Andrea Cadamuro, M.A. Elbestawi, Stephen C. Veldhuis. 2017. ,,The selection of process parameters in additive manufacturing for aerospace alloys”. The International Journal of Advanced Manufacturing Technology 92(5-8): 2081-2098. DOI: 10.1007/s00170-017-0280-7.
  • 3. Nejadpak Ashkan, Yang Cai Xia. 2016. ,,A vibration-based diagnostic tool for analysis of superimposed failures in electric machines”. IEEE International Conference on Electro Information Technology (EIT): 324-329. IEEE Region 4 (R4). 19-21 May 2016, USA. DOI: 10.1109/EIT.2016.7535260.
  • 4. Zieja Mariusz, Paweł Gołda, Mariusz Żokowski, Paweł Majewski. 2017. „Vibroacoustic technique for the fault diagnosis in a gear transmission of a military helicopter”. Journal of Vibroengineering 19(2): 1039-1049.
  • 5. Landry Michel, François Léonard, Champlain Landry, Réal Beauchemin, Olivier Turcotte, Fouad Brikci. 2008. ,,An improved vibration analysis algorithm as a diagnostic tool for detecting mechanical anomalies on power circuit breakers” IEEE Transactions on Power Delivery 23(4): 1986-1994. DOI: 10.1109/TPWRD.2008.2002846.
  • 6. Xue Song, Ian Howard. 2018. ,,Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection”. Mechanical Systems and Signal Processing 100: 706-728. DOI: 10.1016/j.ymssp.2017.07.038.
  • 7. Graževičiūtė J., I. Skiedraitė, V. Jūrėnas, A. Bubulis, V. Ostaševičius. 2008. „Applications of high frequency vibrations for surface milling”. Mechanika 1: 46-49.
  • 8. Ubartas M., V. Ostaševičius, S. Samper, V. Jūrėnas, R. Daukševičius. 2011. „Experimental investigation of vibrational drilling”. Mechanika 4: 368-373.
  • 9. Vaičekauskis M., R. Gaidys, V. Ostaševičius. 2013. „Influence of boundary conditions on the vibration modes of the smart turning tool”. Mechanika 3: 296-300.
  • 10. Nguyen-Schäfer Hung. 2015. “Vibrations of Turbocharger”. Rotordynamics of automotive turbochargers: 37-62. Germany: Springer International Publishing. ISBN: 978-3-319-17644-4. DOI: 10.1007/978-3-319-17644-4.
  • 11. Chiavola Ornella, Palmieri Fulvio, Recco Erasmo. 2018. “Vibration analysis to estimate turbocharger speed fluctuation in diesel engines”. Energy Procedia 148: 876-883. DOI: 10.1016/j.egypro.2018.08.107
  • 12. Palúch Stanislav, Peško Štefan, Majer Tomáš, Černý Jan. 2015. „Transportation network reduction”. Transport Problems 10(2): 69-74. ISSN 1896-0596. DOI: https://doi.org/10.20858/tp.2015.10.2.7.
  • 13. Ascanio G., W. Wang. 2007. “Diesel engine turbocharger performance monitoring using vibration analysis”. 8th International Conference on Engines for Automobiles. SAE Technical Paper 2007-24-0082. 16-20 September 2007, Italy. DOI: 10.4271/2007-24-0082.
  • 14. Crescenzo Domenico, Viktor Olsson, Javier Arco Sola, Hongwen Wu, Andreas Cronhjort, Eric Lycke, Oskar Leufven, Ola Stenlaas. 2016. ,,Turbocharger speed estimation via vibration analysis”. SAE 2016 World Congress and Exhibition. SAE Technical Paper 2007-24-0082. 12-14 April 2016, USA. DOI: 10.4271/2016-01-0632.2016.
  • 15. Chaitanya S Krishna, K. Madhava Reddy, Sai Naga Sri Harsha Ch. 2015. “Vibration properties of 3D printed/rapid prototype parts”. Int. J. Innov. Res. Sci. Eng. Technol 4(6): 4602-4608. DOI:10.15680/IJIRSET.2015.0406087.
  • 16. Andrearczyk Artur. 2015. ,,The application of a photopolymer material for the manufacture of machine elements using rapid prototyping techniques”. Logistyka 4: 8628-8635.
  • 17. Kirk R. Gordon, Alan A. Kornhauser, John, Alsaeed Ali Sterling. 2010. “Turbocharger on-engine experimental vibration testing”. Journal of Vibration and Control 16(3): 343-355. DOI: 10.1177/1077546309103564.
  • 18. Andrearczyk Artur, Paweł Baginski, Pawel Zywica. 2018. ,,Test stand for the experimental investigation of turbochargers with 3D printed components”. Mechanics and Mechanical Engineering 22: 397-404.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ef808cb-8117-4ddb-9a9a-f71182c116a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.