PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conditions of landslide development during the last decade in the Rożnów Dam-Lake region (Southern Poland) based on Airborne Laser Scanning (ALS) data analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to identify the causes of landslide development in the area of Rożnów Lake (Outer Carpathians – southern Poland) in the last decade, Differential Digital Terrain Models (DDM) were used. These were made on the basis of Airborne Laser Scanning (ALS) data from four flights. The first ALS data are from 2010, before the event in Poland known as the “landslide catastrophe”. Comparing digital terrain models from different years tracking of changes in landslide activity relative to the intensity of precipitation. The article presents a method of investigating landslides with the use of DDM. This analysis allowed calculation of the displacement lithological index and of landslide susceptibility, based only on landslides that have become active in the last decade. The areas with the highest susceptibility to landslides are regions of Hieroglyphic Beds occurrence and of tectonic overthrusts. An important role in the development of landslides in the area of Rożnów Lake is also played by the thick-bedded Ciężkowice sandstones (usually associated with low susceptibility to landslides). After the “landslide catastrophe”, it is precisely in these formations that the greatest displacements and more frequent widening of the landslide boundaries were recorded, though they are generally stable during smaller rainfall.
Rocznik
Strony
art. no. 4
Opis fizyczny
Bibliogr. 80 poz., fot., rys., tab., wykr.
Twórcy
  • Polish Geological Institute – National Research Institute, Geohazards Centre, Skrzatów 1, 31-560 Kraków , Poland
Bibliografia
  • 1. Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., Reichenbach, P., 2007. Identification and mapping of recent rainfall induced landslides using elevation data collected by airborne LiDAR. Natural Hazards and Earth System Sciences, 7: 637-650.
  • 2. Bąk, M., Długosz, M., Gorczyca, E., Kasina, K., Kozioł, T., Wrońska-Wałach, D., Wyderski, P., 2011. Mapa osuwisk i terenów zagrożonych ruchami masowymi. Gmina Łososina Dolna, in scale 1:10 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 3. Bober, L., 1984. Landslide areas in the Polish Flysch Carpathians and their connection with the geological structure of the region (in Polish with English summary). Biuletyn Instytutu Geologicznego, 340: 115-158.
  • 4. Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F., 1989. Weights of evidence modelling: a new approach to mapping mineral potential. Geological Survey of Canada Paper, 89-9: 171-183.
  • 5. Bonham-Carter, G.F., 1994. Geographic Information System for Geoscientists: Modelling with GIS. 1st edition. Pergamon Press, Ontario.
  • 6. Borkowski, A., Perski, Z., Wojciechowski, T., Józków, G., Wójcik, A., 2011. Landslides mapping in Roznow lake vicinity, Poland using Airborne Laser Scanning data. Acta Geodynamica et Geomaterialia, 3: 325-333.
  • 7. Borkowski, A., Perski, Z., Wojciechowski, T., Wójcik, A., 2012. LiDAR and SAR data application for landslide study in Carpathians region (Southern Poland). Proceedings of the XXII Congress of the International Society of Photogrammetry and Remote Sensing. Melbourne, 25 August - 1 September 2012. The Surveying and Spatial Sciences Institute of Australia, ISPRS.
  • 8. Brabb, E.E., 1984. Innovative approaches to landslide hazard mapping. Proceedings of the 4th International Symposium on Landslides, Toronto, 1: 307-324.
  • 9. Brezny, M., Pánek, T., 2017. Deep-seated landslides affecting monoclinal flysch morphostructure: evaluation of LiDAR derived topography of the highest range of the Czech Carpathians. Geomorphology, 285: 44-57.
  • 10. Burns, W., Coe, J.A., Kaya, B.S., 2010. Analysis of elevation change detected from multi-temporal LiDAR surveys in forested landslide terrain in Western Oregon. Environmental & Engineering Geoscience, 4: 315-341.
  • 11. Burtan, J., Skoczylas-Ciszewska, K., 1964. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz Męcina (bez utworów czwartorzędowych) wydanie tymczasowe (in Polish). Instytut Geologiczny, Warszawa.
  • 12. Burtan, J., Cieszkowski, M., Ślączka, A., Zuchiewicz, W., 1991. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz Męcina (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 13. Carrara, A., Guzzetti, F., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evaluation: a review of current techniques and their application in multi-scale study, Central Italy. Geomorphology, 31: 181-216.
  • 14. Carter, W., Shrestha, R., Tuell D., Bloomquist, D., Sartori M., 2001. Airborne laser swathmapping shines new light on earths topography. EOS, Transactions of American Geophysical Union, 82: 549-555.
  • 15. Chiu, Ch.-L., Fei, L.-Y., Liu, J.-K., Wu, M.-CH., 2015. National airborne LiDAR mapping and examples for applications in deep-seated landslides in Taiwan. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 26-31, July 2015 Milan, Italy: 4688-4691.
  • 16. Chowaniec, J. (ed.), Wójcik, A. (ed.), Mrozek, T., Rączkowski, W., Nescieruk, P., Perski, Z., Wojciechowski, T., Marciniec, P, Zimnal, Z., Granoszewski, W., 2012. Osuwiska w województwie małopolskim. Atlas-przewodnik (in Polish). Departament Środowiska, Rolnictwa i Geodezji Urzędu Marszałkowskiego Województwa Małopolskiego, Zespół Geologii, Kraków.
  • 17. Cieszkowski, M., 1992. Michalczowa Zone - a new unit of the Fore-Magura Zone, West Carpathians, South Poland (in Polish with English summary). Geologia, 18: 1-125.
  • 18. Cieszkowski, M., Koszarski, A., Leszczyński, S., Michalik, M., Radomski, A., Szulc, J., 1987. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz Ciężkowice (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 19. Cruden, D.M., Varnes, D.J., 1996. Landslides types and processes. Transportation Research Board, NRC Washington D.C., Special Report, 247: 36-75.
  • 20. Daehne, A., Corsini, A., 2012. Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data. Earth Surface Processes and Landforms 38: 640-654.
  • 21. Dikau, R., Brunsden, D., Schrott, L., Ibsen, M.L. (eds.), 1996. Landslide Recognition. Identification, Movement and Causes, J. Wiley & Sons.
  • 22. Długosz, M., 2011. Landslide susceptibility in the Polish Carpathians (in Polish with English summary). Prace Geograficzne IGiPZ PAN, 230: 1-112.
  • 23. Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., Reichenbach, P., 2008. Comparing landslide inventory maps. Geomorphology, 94: 268-289.
  • 24. Gil, E., 1997. Meteorological and hydrological conditions of landslides, Polish Flysch Carpathians. Studia Geomorphologica Carpatho-Balcanica, 31: 143-157.
  • 25. Glade, T., Crozier, M., 2005. A review of scale dependency in landslide hazard and risk analysis. In: Landslide Hazard and Risk (eds. T. Glade, M., Andreson and M. Crozier): 75-138. J. Wiley & Sons, Chichester.
  • 26. Glenn, N.F, Streutker, D.R., Chadwick, D.J., Thackray, G.D., Dorsch, S.J., 2006. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73: 131-148.
  • 27. Guzzetti, F., Cesare Mondini, A., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.T., 2012. Landslide inventory maps: new tools for an old problem. Earth-Science Reviews, 112: 42-66.
  • 28. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.H., Loye, A., Metzger, R., Pedrazzini, A., 2012. Use of LiDAR in landslide in vestigations: a review. Natural Hazards, 61: 5-28.
  • 29. Jebur, M.N., Pradhan, B., Tehrany, M.S., 2014. Optimization of landslide conditioning factors using very high-resolution Airborne Laser Scanning (LiDAR) data atcatchment scale. Remote Sensing of Environment, 152: 150-165.
  • 30. Jodłowski, J., Dobosz, T,. Poroszewski, K., Winiecka, A., 2010. Mapa osuwisk i terenów zagrożonych ruchami masowymi. Gmina Limanowa, 1:10 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 31. Jurys, L., Woźniak, T., Małka, A., Rudeńska, W., Frydel, J., 2011. Mapa osuwisk i terenów zagrożonych ruchami masowymi. Gmina Zakliczyn, 1:10 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 32. Kamiński, M., 2007. Landslide susceptibility map: a case study from the Jodłówka region (Dynowskie Foothills) (in Polish with English summary). Przegląd Geologiczny, 55: 779-784.
  • 33. Koluch, Z., Nowicka, D., 2012. Mapa osuwisk i terenów zagrożonych ruchami masowymi. Gmina Chełmiec, skala 1:10 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 34. Kotarba, A., 1986. The role of landslides in modelling of the Beskidian and Carpathian Foothills relief (in Polish with English summary). Przegląd Geograficzny, 58: 119-129.
  • 35. Lato, M.J., Hutchinson, D.J., Gauthier, D., Edwards, T., Ondercin, M., 2014. Compari son of Airborne Laser Scanning, terrestrial laser scanning, and terrestrial photogrammetry for mapping differential slope change in mountainous terrain. Canadian Geotechnical Journal, 52: 1-12.
  • 36. Lee, S., Choi, J., 2004. Landslide susceptibility mapping using GIS and the weight-of-evidence model. International Journal of Geographical Information Science, 18: 789-814.
  • 37. Lee, S., Lee, M.J., Jung, H.S., 2017. Data mining approaches for landslide susceptibility mapping in Umyeonsan, Seoul, South Korea. Applied Sciences, 7: 683.
  • 38. Liu, J, Duan, Z., 2018. Quantitative assessment of landslide susceptibility comparing statistical index, index of entropy, and weights of evidence in the Shangnan Area, China. Entropy, 20: 868.
  • 39. Małka, A., 2021. Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models. Natural Hazards, 107: 639-674.
  • 40. Margielewski, W., 2004. Patterns of gravitational movements of rock masses in landslide forms of the Polish Flysch Carpathians (in Polish with English sumary). Przegląd Geologiczny, 52: 603-614.
  • 41. McKean, J., Roering J., 2004. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57: 331-351.
  • 42. Mickelson, K.A., 2011. LiDAR-based landslide inventory and susceptibility mapping, and differential LiDAR analysis for the Panther Creek, Watershed, Coast Range, Oregon. M.Sc. thesis, Portland State University, Portland.
  • 43. Mora, O.E., Lenzano, M.G., Toth, Ch.K., Grejner-Brzezinska, D.A., Fayne, J., 2018. Landslide change detection based on multi-temporal airborne LiDAR-Derived DEMs. Geosciences, 8: 1-19.
  • 44. Mrozek, T., 2013. Landslide hazard and risk for a case-study of Szymbark region (Beskid Niski Mts) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 199: 1-40.
  • 45. Paul, Z., 1997. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz Męcina (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 46. Pawłuszek, K., Borkowski, A. 2017a. Impact of DEM-derived factors and analytical hierarchy process on landslides sceptibility mapping in the region of Rożnów Lake, Po land. Natural Hazards, 86: 919-952.
  • 47. Pawłuszek, K., Borkowski, A., 2017b. Automatic landslides mapping in the principal component domain. In: Advancing Culture of Living with Landslides (eds. M. Mikos, V. Vilimek, Y Yin and K. Sassa): 421-428. Landslides in Different Environments, Springer.
  • 48. Pawłuszek, K., Borkowski, A., 2020. Landslides identification using Airborne Laser Scanning data derived topographic terrain attributes and support vectormachine classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41-B8, 2016 XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic: 145-149.
  • 49. Pawłuszek-Filipiak, K., Borkowski, A., 2020. On the importance of train-test split ratio of datasets in automatic landslide detection by supervised classification. Remote Sensing, 12: 1-33.
  • 50. Perski, Z., Wojciechowski, T., Wójcik, A., Borkowski, A., 2014. Monitoring of landslide dynamics with LIDAR, SAR interferometry and photogrammetry case study of Kłodne Landslide, Southern Poland. Proceedings of World Landslide Forum, 3, 2-6 June 2014, Beijing 4: Discussion Session: 200-204.
  • 51. Petschko, H., Bell, R., Glade, T., 2016. Effectiveness of visually analyzing LIDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling. Landslides, 13: 857-872.
  • 52. Pradhan, B., Oh, H.J., Buchroithner, M., 2010a. Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area Geomatics. Natural Hazards and Risk, 1: 199-223.
  • 53. Pradhan, B., Youssef, A., Varathrajoo, R., 2010b. Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geospatial Information Science, 13: 93-102.
  • 54. Razak, K.A., Straatsma, M.W., Van Westen, C.J., Malet, J.P., De Jong, S.M., 2011. Airborne Laser Scanning of forested landslides characterization: terrain model quality and visualization. Geomorphology, 126: 186-200.
  • 55. Schulz, W.H., 2004. Landslides mapped using LIDAR imagery, Seattle, Washington. U.S. Geological Survey Open-File Report 2004-1396: 1-11.
  • 56. Sikora, R., Wojciechowski, T., 2019. Landslides in the Sudetes (in Polish with English summary). Przegląd Geologiczny, 67: 360-368.
  • 57. Starkel, L., 1996. Geomorphic role of extreme rainfalls in the Polish Carpathians. Studia Geomorphologica Carpatho-Balcanica 30: 31-38.
  • 58. Sutinen, R., Hyvönen, E., Kukkonen, I., 2014. LiDAR detection of paleolandslides in the vicinity of the Suasselkäpost glacial fault, Finnish Lapland. International Journal of Applied Earth Observation and Geoinformation, 27: 91-99.
  • 59. Ślączka, A., Krugłov, S., Golonka, J., Oszczypko, N., Popadyuk, I., 2006. Geology and hydrocarbon resources of the Outer Carpathians, Po land, Slovakia and Ukraine: general geology. AAPG Memoir, 84: 221-258.
  • 60. Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., Van Beek, L.P.H., Van Dekerckhove, L., 2007. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32: 754-769.
  • 61. Van Westen, C.J., Seijmonsbergen, A.C., Montavani, F., 1999. Comparing landslide hazard maps. Natural Hazards, 20: 137-158.
  • 62. Van Westen, C.J., Rengers, N., Soeters, R., 2003. Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30: 399-419.
  • 63. Van Westen, C.J., Castellanos, E., Kuriakose, S.L., 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assesment. An overview. Engineering Geology, 102: 112-131.
  • 64. Varnes, D.J., 1978. Slope movement types and processes. Transportation Research Board, National Academy of Science, Washington, Special Report, 176: 11-33.
  • 65. Varnes, D.J., 1984. Landslide hazard zonation: a review of principles and practices. Natural Hazards, 3. United Nations Education, Scientific and Cultural Organization, Paris.
  • 66. Ventura, G., Vilardo, G., Terranova, C., Bellucci Sessa, E., 2013. 4D Monitoring of active landslides by multi-temporal airborne LiDAR data. Landslide Science and Practice, 2: Early Warning, Instrumentation and Monitoring. Springer, Berlin.
  • 67. Verbovsek, T., Kocevar, M., Benko, I., Macek, M., Petkovsek, A., 2017. Monitoring of the Stogovce Landslide slope movements with geasense GNSS probes, SW Slovenia. Advancing Culture of Living with Landslides: 3: 311-316. Springer International Publishing, Switzerland.
  • 68. Wieczorek, D., Dąbrowski, R., Stoiński, A., 2010. Mapa osuwisk i terenów zagrożonych ruchami masowymi, gmina Czchów, skala 1:10 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 69. Wojciechowski, T., 2019. Landslide susceptibility of Poland (in Polish with English summary). Przegląd Geologiczny 67: 320-325.
  • 70. Wojciechowski, T., Pyrc, R., 2016. Czynniki wpływające na aktywność osuwisk w rejonie Gródka nad Dunajcem w 2010 roku (in Polish). III Polish Geological Congress. Conference materials: 432-434. Polish Geological Society.
  • 71. Wojciechowski, T., Wójcik, A., 2015. Podatność i zagrożenia osuwiskowe na fragmencie wschodniego obrzeżenia Jeziora Rożnowskiego w świetle analiz różnicowych LIDAR (in Polish). Polish Conference Osuwisko, May 19-22 2015, Wieliczka. Conference materials: 79-81. Państwowy Instytut Geologiczny, Warszawa.
  • 72. Wojciechowski, T., Borkowski, A., Perski, Z., Wójcik, A., 2012. Airborne Laser Scanning data in landslide studies at the example of the Zbyszyce landslide (Outer Carpathians) (in Polish with English summary). Przegląd Geologiczny, 60: 95-102.
  • 73. Wódka, M., 2020. Assessment of activities of selected landslides in the Rożnów Dam Lake region based on field studies and analyses of Differential Digital Models (in Polish with English summary). Przegląd Geologiczny, 68: 60-68.
  • 74. Wójcik, A., 1997. Landslides in the Koszarawa drainage basin - structural and geomorphological control (Western Carpathians, Beskid Żywiecki Mts.) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 376: 5-42.
  • 75. Wójcik, A., Perski, Z., Wojciechowski, T., 2012. Kłodne (in Polish). In: Osuwiska w województwie małopolskim. Atlas-przewodnik (eds J. Chowaniec and A. Wójcik). Departament Środowiska, Rolnictwa i Geodezji Urzędu Marszałkowskiego Województwa Małopolskiego, Zespół Geologii, Kraków.
  • 76. Wójcik, A., Wojciechowski, T., Wódka, M., Krzysiek, U., 2015. Mapa osuwisk i terenów zagrożonych ruchami masowymi. gmina Gródek nad Dunajcem, skala 1:10 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 77. Zabuski, L., Thiel, K., Bober, L., 1999. Osuwiska we fliszu polskich Karpat: geologia, modelowanie, obliczenia stateczności (in Polish). Institute of Hydro-Engineering of Polish Academy of Sciences, Gdańsk.
  • 78. Ziętara, T., 1974. The role of landslides in modelling the Rożnów Foothills (Western Flysch Carpathians) (in Polish with English summary). Studia Geomorphologica Carpatho-Balcanica, 8: 115-133.
  • 79. Zuchiewicz, W., 1990. Quaternary deposits of the Rożnów Foothills, Polish West Carpathians (in Polish with English summary). Przegląd Geologiczny, 38: 307-315.
  • 80. Żytko, K., Zając, R., Gucik, S., Ryłko, W., Oszczypko, N., Garlicka, I., Nemćok, J., Elias, M., Mencik, E., Stranik, Z., 1989. Map of the tectonic elements of the Western Outer Carpathians and their foreland. In: Geological Atlas of the Western Outer Carpathians and Their Foreland (eds. D. Poprawa and J. Nemćok). Państwowy Instytut Geologiczny, Warszawa.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ef11b39-19cf-46f2-bae1-e41af98f9627
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.