Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of this study is to explore the optimization of support structures for horizontal pressure vessels using simulation modeling. The research aims to reduce the mass of the support while ensuring structural integrity and identifying opportunities for future improvements in materials and design. Design/methodology/approach: The research was conducted by creating a three-dimensional support model in SolidWorks, compliant with GOST standards. The stress-strain behavior and optimization of the support structure were analyzed using SolidWorks’ Simulation module, which employs the finite element method (FEM). Non-uniform load distributions, such as sinusoidal and parabolic loads, were applied during the loading process to enhance the accuracy of the simulation without incorporating the vessel body itself. Findings: The simulation results showed that optimizing the support structure led to a 15% reduction in its mass. Even though this also resulted in a 23% increase in equivalent stresses in critical areas, the support structure remains safe to operate, with a strength reserve factor under static loads exceeding 2. Research limitations/implications: Further research should include simulations that account for the type and properties of connections between elements, particularly weld calculations. Additionally, future studies could explore the use of higher-grade steels than the tested 09G2C steel to achieve further mass reductions, provided the cost is justifiable. Practical implications: This study is particularly relevant for the design of pressure vessel supports used in vehicles, trailers, and semi-trailers transporting liquids or liquefied hydrocarbon gases. Reducing the mass of support structures can increase payload capacity, offering significant commercial benefits in transportation efficiency. Social implications: A lighter, optimized support structure can contribute to more fuel-efficient transportation of liquid and gas materials, thereby reducing the environmental impact of logistics operations. Originality/value: The originality of this study lies in the combined use of topological and parametric optimization techniques for modeling horizontal pressure vessel supports. The paper provides valuable insights into how simulation-based optimization can lead to significant mass reductions while maintaining structural safety. This research is particularly useful to engineers and designers working on pressure vessel supports for transportation applications.
Rocznik
Tom
Strony
47--58
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- AGH University of Krakow, Poland
autor
- Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
autor
- Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
autor
- Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
autor
- Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
autor
- AGH University of Krakow, Poland
autor
- AGH University of Krakow, Poland
autor
- AGH University of Krakow, Poland
Bibliografia
- 1. Abdewi, E., Fahel Alboum, N. (2023). Design and Static Structural Analysis of a Horizontal Pressure Vessel. International Science and Technology Journal, 31.
- 2. Adithya, M., Patnaik, M. (2013). Finite Element Analysis of Horizontal Reactor Pressure Vessel Supported on Saddles. International Journal of Innovative Research in Science, Engineering and Technology, 2, 3213-3220.
- 3. Bembenek, M., Dzienniak, D., Dzindziora, A., Sułowski, M., Ropyak, L. (2023). Investigation of the Impact of Face Milling Parameters on the Roughness of the Machined Surface for 1.4301 Steel. Advances in Science and Technology. Research Journal, 17.
- 4. Błachut, J., Magnucki, K. (2008). Strength, Stability, and Optimization of Pressure Vessels: Review of Selected Problems. Applied Mechanics Reviews 61, 060801. https://doi.org/10.1115/1.2978080
- 5. Buchert, T., Ko, N., Graf, R., Vollmer, T., Alkhayat, M., Brandenburg, E., Stark, R., Klocke, F., Leistner, P., Schleifenbaum, J. (2018). Increasing resource efficiency with an engineering decision support system for comparison of product design variants. Journal of Cleaner Production, 210. https://doi.org/10.1016/j.jclepro.2018.11.104
- 6. Chavda, B., Shukla, R., Tiwari, H., Pandey, A., Rehman, Y. (2022). Design of Pressure Vessel Using Computational Techniques. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2022.41116
- 7. Javidrad, H.R., Javidrad, F. (2023). Review of state-of-the-art research on the design and manufacturing of support structures for powder-bed fusion additive manufacturing. Prog. Addit. Manuf., 8, 1517-1542. https://doi.org/10.1007/s40964-023-00419-6
- 8. Krantovska, O., Petrov, M., Ksonshkevych, L., Orešković, M., Synii, S., Іsmailovа, N. (2019). Numerical simulation of the stress-strain state of complex-reinforced elements. Tehnički glasnik. https://doi.org/10.31803/TG-20190417112619
- 9. Lyakh, M.M., Mykhailiuk, V.V. (2022). Аналіз конструкції газорідинного сепаратора та дослідження його характеристик [Analysis of the structure of a gas-liquid separator and study of its characteristics]. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, 2, 31-37. https://doi.org/10.31471/1993-9965-2022-2(53)-31-37
- 10. Mykhailiuk, V., Zasadzień, M., Liakh, M., Deineha, R., Mosora, Y., Faflei, O. (2024). Analysis of the possibility of modeling gas separators using computational fluid dynamics. Management Systems in Production Engineering 32, 80-86. https://doi.org/10.2478/mspe- 2024-0009
- 11. Mykhailiuk, V.V. (2023). Дослідження кільцевого адсорбера [Study of a ring adsorber]. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, 2, 40-46. https://doi.org/10.31471/1993-9965-2023-2(55)-40-46
- 12. Mykhailiuk, V.V., Faflei, O.Y., Melnyk, V.O., Zakhara, I.Y., Malyshev, A.R., Protsiuk, H.Y. (2022a). Моделювання газового вертикального сіткового сепаратора [Modeling of a gas vertical grid separator]. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, 1, 91-100.
- 13. Mykhailiuk, V.V., Protsiuk, H.Y., Yurych, A.R., Yurych, L.R., Babets, M.V., Stetsiuk, R.B. (2022b). Автоматизоване розроблення градуювальної таблиці горизонтальних резервуарів [Automated development of the grading table of horizontal reservoirs]. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, 47-53.
- 14. Nayak, A., Singru, P. (2021). Effect of Number of Stiffening Rings, Their Position and Cross Section on Stress Concentration Near Saddle Support in Horizontal Pressure Vessels. In: Y.V.D. Rao, C. Amarnath, S.P. Regalla, A. Javed, K.K. Singh (Eds.), Advances in Industrial Machines and Mechanisms (pp. 521-530). Singapore: Springer, https://doi.org/10.1007/978-981-16-1769-0_47
- 15. OST 26-2091-93 (1993). Supports for Horizontal Process and Pressure Vessels. Design.
- 16. Quin, S., Widera, G. (1996). Use of Stress-Strength Model in Determination of Safety Factor for Pressure Vessel Design. Journal of Pressure Vessel Technology-transactions of The ASME, 118, 27-32. https://doi.org/10.1115/1.2842158
- 17. Selejdak, J., Bobalo, T., Blikharskyy, Y., Dankevych, I. (2023). Mathematical modelling of stress-strain state of steel-concrete beams with combined reinforcement. Production Engineering Archives, 29, 108-115. https://doi.org/10.30657/pea.2023.29.13
- 18. Varga, L. (1991). The optimum support of horizontal pressure vessels made from reinforced plastic. Composites, 22, 227-238. https://doi.org/10.1016/0010-4361(91)90323-9
- 19. Vivekanandan, M., Venkatesh, R., Sathish, T., Dinesh, S., Ravichandran, M., Vijayan, V., 2019. Pressure Vessel Design using PV-ELITE Software with Manual Calculations and Validation by FEM. Journal of Engineering Technology, 8, 425-433.
- 20. Wang, L., Cai, W., He, Y., Peng, T., Xie, J., Hu, L., Li, L. (2023). Equipment-process- strategy integration for sustainable machining: a review. Frontiers of Mechanical Engineering, 18, 36. https://doi.org/10.1007/s11465-023-0752-4
- 21. Widera, G.E.O., Sang, Z.F., Natarajan, R. (1988). On the Design of Horizontal Pressure Vessels. Journal of Pressure Vessel Technology, 110, 393-401. https://doi.org/10.1115/1.3265621
- 22. Yang, L., Weinberger, C., Shah, Y.T. (1994). Finite element analysis on horizontal vessels with saddle supports. Computers & Structures, 52, 387-395. https://doi.org/10.1016/0045- 7949(94)90224-0
- 23. Zhang, Y., Guo, H., Li, J., Yang, G., Ma, Y. (2014). Simulation Research of a type of Pressure Vessel under Complex Loading. Part 1: Component Load of the Numerical Analysis. Proceedings of the 2012 2nd International Conference on Computer and Information Application. https://doi.org/10.2991/iccia.2012.165
- 24. Zheng, A., Bian, S., Chaudhry, E., Chang, J., Haron, H., You, L., Zhang, J. (2020). Minimizing Material Consumption of 3D Printing with Stress-Guided Optimization. In: V.V. Krzhizhanovskaya, G. Závodszky, M.H. Lees, J.J. Dongarra, P.M.A. Sloot, S. Brissos, J. Teixeira (Eds.), Computational Science - ICCS 2020 (pp. 588-603). Cham: Springer International Publishing, https://doi.org/10.1007/978-3-030-50426-7_44
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eeff233-b472-4a01-b558-be5db02fcbd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.