PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initial assumptions for the system of automatic detection and classification of aircraft noise events

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study undertakes the development and implementation of an algorithm for an automatic separation of acoustic events related to aircraft flights. The data are provided by noise monitoring stations operating as part of multi-point continuous noise measurement systems around small and medium-sized airports and helicopter landing sites in Poland. The article presents initial assumptions of the developed method based on the conclusions of the research. For this purpose, two different methods of airborne noise signal detection will be discussed. The first method is based on the analysis of the value of the changing rate of the signal being the difference between the value of the analysed sample and the value of the h-th previous sample of the recorded sound level time history. The second method uses a convolutional neural network operating on values recorded in 1/3-octave bands. The objective of the study is to examine the effectiveness and limitations of the selected methods on the collected representative input data.
Rocznik
Strony
art. no. 2022208
Opis fizyczny
Bibliogr. 21 poz., il. kolor., wykr.
Bibliografia
  • 1. M. Basner, C. Clark, A. Hensell, J.I. Hileman, S. Janssen, K. Shepherd, V. Sparrow; Aviation noise impacts: state of the science; Noise Health 2017, 19(87), 41-50. DOI: 10.4103/nah.NAH10416
  • 2. M. Basner, S. McGuire; WHO environmental noise guidelines for the European region: a systematic review on environmental noise and effects on sleep; Int. J. Environ. Res. Publ. Health 2018, 15(3), 519. DOI: 10.3390/ijerph15030519
  • 3. World Health Organisations WHO; Night Noise Guidelines for Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2009.
  • 4. M. Basner, W. Babisch, A. Davis, M. Brink, C. Clark, S. Jansen, S. Stansfeld; Auditory and nonauditory effects of noise on health; Lancet 2013, 383(9925), 1325-1332. DOI: 10.1016/S0140-6736(13)1613-X
  • 5. M. Kaltenbach, C. Maschke, F. Hess, H. Niemann, M. Führ; Health impairments, annoyance, and learning disorders caused by aircraft noise; Int. J. Environ. Protect 2016, 6(1), 15-46. DOI: 10.5963/IJEP0601003.
  • 6. A.A. Faiyetole, J.T. Sivowalu; The effects of aircraft noise on psychosocial health; Journal of Transport & Health 2021, 22, 101230. DOI: 10.1016/j.jth.2021.101230
  • 7. M. Snellen, R. Merino-Martinez, D.G. Simons; Assessment of noise variability of landing aircraft using phased microphone array; J. Aircraft 2017, 54(6), 2173-2183.
  • 8. D.G. Simons, I. Besnea, T.H. Mohammadioo, J.A. Melkert, M. Snellen; Comparative assessment of measured and modelled aircraft noise around Amsterdam Airport Schiphol; Transportation Research Part D: Transport and Environment 2022, 106, 103216. DOI: 10.1016/j.trd.2022.103216
  • 9. L. Bertsch, D.G. Simons, M. Snellen; Aircraft Noise: The major sources, modelling capabilities, and reduction possibilities; Technical Report, Deutsches Zentrum Für Luft- und Raumfahrt: Göttingen, Germany, 2015. DOI: 10.34912/ac-n0is3
  • 10. P. Morrell, C.H.Y. Lu; Aircraft noise social cost and charge mechanisms - a case study of Amsterdam airport Schiphol; Transportation Research Part D: Transport and Environment 2000, 5(4), 305-320. DOI: 10.1016/S1361-9209(99)00035-8
  • 11. R. Merino-Martínez, S.J. Heblij, D.H.T. Bergmans, M. Snellen, D.G. Simons; Improving aircraft noise predictions considering fan rotational speed; J. Aircr. 2018, 56(1), 284-294. DOI: 10.2514/1.C034849
  • 12. European Civil Aviation Conference; Report on Standard Method of Computing. Noise Contours around Civil Airports, Vol. 2, 2016.
  • 13. A. Osses Vecchi, M. Glisser Donoso, C.G. Büchi, R. Guzmán López; Comparison of methodologies for continuous noise monitoring and aircraft detection in the vicinity of airports; Proceedings of the 18th International Congress on Sound & Vibration, Rio de Janeiro, Brazil, July 10-14, 2011; International Institute of Acoustics and Vibration: Rio de Janeiro, Brazil, 2011.
  • 14. N. Heller, D. Anderson, M. Baker, B. Juffer, N. Papanikolopoulos; Convolutional Neural Networks for Aircraft Noise Monitoring; Technical report, 2018. DOI: 10.48550/ARXIV.1806.04779
  • 15. Y. Lecun, L. Bottou, Y. Bengio, P. Haner; Gradient-based learning applied to document recognition; Proceedings of the IEEE 1998, 86(11), 2278-2324. DOI: 10.1109/5.726791
  • 16. S. Ioffe, C. Szegedy; Batch normalization: Accelerating deep network training by reducing internal covariate shift; arXiv:1502.03167 2015. DOI: 10.48550/ARXIV.1502.03167
  • 17. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov; Dropout: A simple way to prevent neural networks from overfitting; Journal of Machine Learning Research 2014, 15(56), 1929-1958.
  • 18. Y. Bengio; Practical recommendations for gradient-based training of deep architectures; arXiv: 2012. DOI: 10.48550/ARXIV.1206.5533
  • 19. ISO, International Standard ISO 20906:2009(E): Acoustics - Unattended monitoring of Aircraft sound in the vicinity of airports, Geneva, 2009.
  • 20. C. Asensio, M. Ruiz, M. Recuero; Real-time aircraft noise likeness detector; Applied Acoustics 2009, 71(6), 539-545. DOI: 10.1016/j.apacoust.2009.12.005
  • 21. S. Hochreiter, J. Schmidhuber; Long Short-Term Memory; Neural Computation 1997, 9(8), 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eed69e1-1f45-49cb-b576-e5cf32f152d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.