PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flowstones from the Račiška Pečina Cave (SW Slovenia) Record 3.2-Ma-long history

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Establishing a chronology of events is a critical step in reconstructing the palaeoclimate and it is important for all types of environmental records, including speleothems. Here, we analysed a unique series of flowstones deposited between 3.2 Ma (marine isotope stage (MIS) Km3) and 0.08 Ma (MIS 5). The studied flowstones are located in a classic karstic environment, the Račiška Pečina Cave in south-western Slovenia. Further, a detailed chronology of events was constructed based on oxygen isotope stratigraphy (OIS), combined with magnetostratigraphy and U-series dating. Two curves were selected as reference records where the LR04 record was used as the global curve and a Mediterranean record was used as the regional curve. The Račiška Pečina profile was divided into two segments separated by a principal disconformity. The lower segment correlated better with the regional Mediterranean curve, while the upper segment was with the global LR04 curve. These findings suggest that the main factors controlling environmental conditions in the cave area changed between 3.2 and 0.8 million years ago.
Wydawca
Czasopismo
Rocznik
Strony
31--45
Opis fizyczny
Bibliogr. 77 poz., rys.
Twórcy
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55 , PL 00-818 Warszawa, Poland
  • Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165-00 Praha 6, Czech Republic
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55 , PL 00-818 Warszawa, Poland
  • Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165-00 Praha 6, Czech Republic
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55 , PL 00-818 Warszawa, Poland
  • Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165-00 Praha 6, Czech Republic
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55 , PL 00-818 Warszawa, Poland
  • Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165-00 Praha 6, Czech Republic
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55 , PL 00-818 Warszawa, Poland
  • Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165-00 Praha 6, Czech Republic
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55 , PL 00-818 Warszawa, Poland
  • Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165-00 Praha 6, Czech Republic
autor
  • ZRC SAZU Karst Research Institute, Titov trg 2, 6230 Postojna, Slovenia
Bibliografia
  • 1. Affek HP, Matthews A, Ayalon A, Bar-Matthews M, Burstyn Y, Zaarur S and Zillberman T, 2014. Accounting for kinetic isotope effects in Soreq Cave (Israel) speleothems. Geochimica et Cosmochimica Acta 143: 303–318, DOI: 10.1016/j.gca.2014.08.008.
  • 2. Almogi-Labin A, Bar-Matthews M, Shriki D, Kolosovsky E, Paterne M, Schilman B, Ayalon A, Aizenshtat Z, Matthews A, 2009. Climatic variability during the last 90 ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quaternary Science Reviews 28(25–26): 2882–2896, DOI: 10.1016/j.quascirev.2009.07.017.
  • 3. Ayalon A, Bar-Matthews M, Kaufman A, 2002. Climatic conditions during marine oxygen isotope stage 6 in the eastern Mediterranean region from the isotopic composition of speleothems of Soreq Cave, Israel. Geology 30(4): 303–306, DOI: 10.1130/0091-7613(2002)030<0303:CCDMOI>2.0.CO;2.
  • 4. Baker A, Wilson R, Fairchild IJ, Franke J, Spötl C, Mattey D, Trouet V and Fuller L, 2011. High resolution δ18O and δ13C records from an annually laminated Scottish stalagmite and relationship with last millennium climate. Global and Planetary Change 79(3–4): 303–311, DOI: 10.1016/j.gloplacha.2010.12.007.
  • 5. Bar-Matthews M, Ayalon A, Gilmour M, Matthews A and Hawkesworth CJ, 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for palaeorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67(17): 3181–3199, DOI: 10.1016/S0016-7037(02)01031-1.
  • 6. Bar-Matthews M, Ayalon A, Kaufman A and Wasserburg GJ, 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166(1–2): 85–95, DOI: 10.1016/S0012-821X(98)00275-1.
  • 7. Bosák P, Hercman H, Mihevc A and Pruner P, 2002. High resolution magnetostratigraphy of speleothems from Snežna Jama, Kamniške-Savinja Alps, Slovenia. Acta carsologica 31(3): 15–32. DOI: 10.3986/ac.v31i3.377/.
  • 8. Bosák P, Pruner P and Kadlec J, 2003. Magnetostratigraphy of cave sediments: Application and limits. Studia Geophysica et Geodaetica 47(2): 301–330. DOI: 10.1023/A:1023723708430.
  • 9. Bosák P, Pruner P, Mihevc A and Zupan Hajna N, 2000. Magnetostratigraphy and unconformities in cave sediments: Case study from the Classical Karst, SW Slovenia. Geologos 5: 13–30.
  • 10. Bosák P, Pruner P, Mihevc A, Zupan Hajna N, Horáček J, Kadlec J, Man O and Schnabl P, 2004. Račiška pečina. 12th International Karstological School, Classical Karst – Dating of Cave Sediments, Postojna. Guide booklet for the excursions and abstracts of presentations: 23–27, Postojna.
  • 11. Burstyn Y, Martrat B, Lopez JF, Iriarte E, Jacobson MJ, Lone MA and Deininger M, 2019. Speleothems from the Middle East: An example of water limited environments in the SISAL Database. Quaternary Review 2(2): 16, DOI: 10.3390/quat2020016.
  • 12. Cande SC and Kent DV, 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100(B4): 6093–6095, DOI: 10.1029/94JB03098.
  • 13. Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA and Asmerom Y, 2000. The half-lives of U-234 and Th-230. Chemical Geology 169: 17–33, DOI: 10.1016/S0009-2541(99)00157-6.
  • 14. Cheng H, Edwards RL, Shen CC, Polyak VJ, Asmerom Y, Wood-head J, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X and Alexander CE, 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372: 82–91, DOI: 10.1016/j.epsl.2013.04.006.
  • 15. Cheng H, Lawrence Edwards LR, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y and Zhang H, 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534: 640–646, DOI: 10.1038/nature18591.
  • 16. Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M, Cardoso AO, Ferrari JA, Dias PLS and Viana O Jr, 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434: 63–66.
  • 17. Dansgaard W, 1964. Stable isotopes in precipitation. Tellus 16(4): 436–468, DOI: 10.1111/j.2153-3490.1964.tb00181.x.
  • 18. Darling WG, 2004. Hydrological factors in the interpretation of stable isotopic proxy data present and past: A European perspective. Quaternary Science Reviews 23: 743–770, DOI: 10.1016/j.quascirev.2003.06.016.
  • 19. Demeny A, Kern Z, Czuppon G, Németh A, Leél-Össy S, Siklósy Z, Lin K, Hu HM, Shen CC, Vennemann TW and Haszpra L, 2017. Stable Isotope Compositions of Speleothems from the last interglacial E spatial patterns of climate fluctuations in Europe. Quaternary Science Reviews 161: 68–80, DOI: 10.1016/j.quascirev.2017.02.012.
  • 20. Desmarchelier JM, Goede A, Ayliffe LK, McCulloch MT and Moriarty K, 2000. Stable isotope record and its palaeoenvironmental interpretation for a late Middle Pleistocene speleothem from Victoria Fossil Cave, Naracoorte, South Australia. Quaternary Science Reviews 19: 763–774, DOI: 10.1016/S0277-3791(99)00037-2.
  • 21. Dorale JA and Liu Z, 2009. Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of Cave and Karst Studies the National Speleological Society Bulletin 71(1): 73–80.
  • 22. Drysdale R, Zanchetta G, Hellstrom JC, Fallick AE and Zhao J, 2005. Stalagmite evidence for the onset of the last interglacial in southern Europe at 129 ± 1 ka. Geophysical Research Letters 32: 1–4, DOI: 10.1029/2005GL024658.
  • 23. Fairchild IJ and Baker A, 2012. Speleothem Science: From Process to Past Environments. John Wiley and Sons, DOI: 10.1002/9781444361094.app1.
  • 24. Fohlmeister J, Voarintsoac NRG, Lechleitner AF, Boyd M, Brandtstätter S, Jacobsong MJ and Osterh JL, 2020. Main controls on the stable carbon isotope composition of speleothems. Geochimica et Cosmochimica Acta 279: 67–68, DOI: 10.1016/j.gca.2020.03.042.
  • 25. Goede A, 1994. Continuous early last glacial palaeoenvironmental record from a Tasmanian speleothem based on stable isotope and minor element variations. Quaternary Science Reviews 13: 283–291, DOI: 10.1016/0277-3791(94)90031-0.
  • 26. Goede A, Green DC and Harmon RS, 1986. Late Pleistocene palaeotemperature record from a Tasmanian speleothem: Australian. Journal of Earth Sciences 33: 333–342.
  • 27. Gradstein FM, Ogg JG, Schmitz MD and Ogg GM, 2012. The Geologic Time Scale 2012. Elsevier, DOI: 10.1016/C2011-1-08249-8.
  • 28. Hellstrom J, 2006. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1(4): 289–295, DOI: 10.1016/j.quageo.2007.01.004.
  • 29. Hendy CH, 1971. The isotopic geochemistry of speleothems – I. the calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35: 801–824, DOI: 10.1016/0016-7037(71)90127-X.
  • 30. Hercman H, Pawlak J, Gąsiorowski M, Błaszczyk M, Sierpień P, Pruner P, Schnabl P, Kdýr Š, Matoušková Š, Zupan Hajna N, Mihevc A and Bosák P, submitted. Climate change at Matuyama/Brunhes magnetic reversal recorded in flowstone from the Račiška pečina Cave (Slovenia). Palaeogeography, Palaeoclimatology, Palaeoecology.
  • 31. Holden NE, 1990. Total half-lives for selected nuclides. Pure and Applied Chemistry 62(5): 941–958, DOI: 10.1351/pac199062050941.
  • 32. Horáček I, Mihevc A, Zupan Hajna N, Pruner P and Bosák P, 2007. Fossil vertebrates and paleomagnetism update one of the earlier stages of cave evolution in the Classical Karst, Slovenia: Pliocene of Črnotiče II site and Račiška pečina. Acta Carsologica 37(3): 451–466, DOI: 10.3986/ac.v36i3.179.
  • 33. Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL and Shackleton NJ, 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger A, Imbrie J, Hays H, Kukla G and Saltzman B, eds., Milankovitch and Climate: Understanding the Response to Astronomical Forcing. D. Reidel, Norwell: 269–305.
  • 34. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC and Essling AM, 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C4: 1889–1906, DOI: 10.1103/PhysRevC.4.1889.
  • 35. Kolodny Y, Stein M and Machlus M, 2005. Sea-rain-lake relation in the Last Glacial East Mediterranean revealed by δ18O-δ13C in Lake Lisan aragonites. Geochimica et Cosmochimica Acta 69: 4045–4060, DOI: 10.1016/j.gca.2004.11.022.
  • 36. Krivic P, Bricelj M and Zupan M, 1989 Underground water connections in cicarije region and in middle Istra. Acta Carsologica, 18, Ljubljana, 265–295.
  • 37. Lachniet MS, 2006. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28(5): 412–432, DOI: 10.1016/j.quascirev.2008.10.021.
  • 38. Lachniet MS, 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28(5–6): 412–432, DOI: 10.1016/j.quascirev.2008.10.021.
  • 39. Lambert WJ and Aharon P, 2011. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments. Geochemica et Cosmochimica Acta 75: 753–768, DOI: 10.1016/j.gca.2010.11.006.
  • 40. Lascu I and Feinberg JM, 2011. Speleothem magnetism. Quaternary Science Reviews 30(23–24): 3306–3320, DOI: 10.1016/j.quascirev.2011.08.004.
  • 41. Lauritzen SE and Lundberg J, 1999. Speleothems and climate: a special issue of The Holocene. The Holocene 9: 643–647. DOI: 10.1191/095968399666229065.
  • 42. Levin EN, Zipser JE and Cerling ET, 2009. Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for eastern Africa. Journal of Geophysical Research Atmospheres 114: 23, DOI: 10.1029/2009JD012166.
  • 43. Lisiecki LE and Raymo ME, 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography and Paleoclimatology 20(1), PA1003, DOI: 10.1029/2004PA001071.
  • 44. Lourens LJ, Hilgen FJ, Shackleton NJ, Laskar J and Gradstein D, 2004. A Geologic Time Scale. Cambridge University Press, 409–440.
  • 45. Mangini A, Spotl C and Verdes P, 2005. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth and Planetary Science Letters 235: 741–751, DOI: 10.1016/j.epsl.2005.05.010.
  • 46. McDermott F, Atkinson TC, Fairchild IJ, Baldini LM and Mattey DP, 2011. A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems. Global and Planetary Change 79: 275–287, DOI: 10.1016/j.gloplacha.2011.01.005.
  • 47. McDermott F, Schwarcz H and Rowe PJ, 2006. Isotopes in speleothems In: Leng MJ, (ed.), Isotopes in Palaeoenvironmental Research. Springer, Dordrecht, The Netherlands, 185–226.
  • 48. McDermott F. 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quaternary Science Reviews 23(7–8): 901–918. DOI: 10.1016/j.quascirev.2003.06.021.
  • 49. Mezga K, Urbanc J and Cerar S, 2014. The isotope altitude effect reflected in groundwater: A case study from Slovenia. Isotopes in Environmental and Health Studies 50(1): 33–51, DOI: 10.1080/10256016.2013.826213.
  • 50. Mickler PJ, Stern LA and Banner JL, 2015. Large kinetic isotope effects in modern speleothems. Geological Society of America, Bulletin 118(1–2): 65–81, DOI: 10.1130/B25698.1.
  • 51. Mihevc A, 2001. Speleogeneza Divaškega krasa. ZRC Publishing, Ljubljana.
  • 52. Mihevc A, 2007. The age of karst relief in West Slovenia. Acta Carsologica 36(1): 35–44, DOI: 10.3986/ac.v36il.206.
  • 53. Milošević DD, Savić SM, Stankov U, Žiberna I, Pantelić MM, Dolinaj D and Ieščešen I, 2017. Maximum temperatures over Slovenia and their relationship with atmospheric circulation patterns. Geografie 122(1): 1–20, DOI: 10.37040/geografie2017122010001.
  • 54. Moldovan OT, Mihevc A, Mikó L, Constantin S, Meleg I, Petculescu A and Bosák P, 2011. Invertebrate fossils from cave sediments: A new proxy for pre-Quaternary paleoenvironments. Biogeosciences 8: 1825–1837, DOI: 10.5194/bg-8-1825-2011.
  • 55. Morinaga H, Yonezawa T, Adachi Y, Inokuchi H, Goto H, Yaskawa K, 1994. The possibility of inferring paleoseismicity from paleomagnetic dating of speleothems, western Japan. Tectonophysics 230(3–4): 241–248, DOI: 10.1016/0040-1951(94)90138-4.
  • 56. Nehme C, Kluge T, Verheyden S, Nader F, Charalambidou I, Weissbach T, Gucel S, Cheng H, Edwards RL, Satterfield L, Eiche E, Claeys Ph, 2020. Speleothem record from Pentadactylos cave (Cyprus): new insights into climatic variations during MIS 6 and MIS 5 in the Eastern Mediterranean. Quaternary Science Reviews 250, DOI: 10.1016/j.quascirev.2020.106663.
  • 57. Orland IJ, Bar-Matthews M, Ayalon A, Matthews A, Kozdon R, Ushikubo T and Valleya JW, 2012. Seasonal resolution of Eastern Mediterranean climate change since 34 ka from a Soreq Cave speleothem. Geochimica et Cosmochimica Acta 89: 240–255, DOI: 10.1016/j.gca.2012.04.035.
  • 58. Pawlak J and Hercman H, 2016. Numerical correlation of speleothem stable isotope records using a genetic algorithm. Quaternary Geochronology 33: 1–12, DOI: 10.1016/j.quageo.2015.12.005.
  • 59. Pruner P, Bosák P, Mihevc A, Kadlec J, Man O and Schnabl P, 2003. Preliminary report on palaeomagnetic research on Račiška pečina Cave, SW Slovenia. 11th International Karstological School „Classical Karst“. Karst Terminology. Guide booklet of the excursions and abstracts of lectures or poster presentations, Postojna, July 2003: 35–37. Karst Research Institute ZRC SAZU, Postojna.
  • 60. Pruner P, Zupan Hajna N, Mihevc A, Bosák P, Man O, Schnabl P and Venhodová D, 2009. Magnetostratigraphy and fold tests from Račiška pečina and Pečina v Borštu caves (Classical Karst, Slovenia). Studia Geophysica et Geodaetica 54(1): 27–48, DOI: 10.1007/s11200-010-0002-1.
  • 61. Różański K, Araguas-Araguas L and Gonfiantini R, 1993. Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records 78: 1–36, DOI: 10.1029/GM078.
  • 62. Scholz D and Hoffmann D, 2008. 230Th/U-dating of fossil corals and speleothems. Quaternary Science Journal 57(1–2): 52–76, DOI: 10.3285/eg.57.1-2.3,2008.
  • 63. Šikič D, Pleničar M and Sparica M, 1972. Osnovna geološka karta SFRJ, list Ilirska Bistrica, 1:100 000. Zvezni geološki zavod Beograd.
  • 64. Spötl C, Fohlmeister J, Cheng H and Boch R, 2016. Modern aragonite formation at near-freezing conditions in an alpine cave, Carnic Alps, Austria. Chemical Geology 435: 60–70, DOI: 10.1016/j.chemgeo.2016.04.017.
  • 65. Sundqvist HS, 2007. Speleothems as environmental recorders: A study of Holocene speleothems and their growth environments in Sweden. WEB site: <http://www.diva-portal.org/smash/get/diva2:190032/FULLTEXT01.pdf>.
  • 66. Ünal-İmer E, Shulmeister J, Zhao JX, Uysal T and Feng YX, 2016. High-resolution trace element and stable/radiogenic isotope profiles of late Pleistocene to Holocene speleothems from Dim Cave, SW Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology, 452: 68–79, DOI: 10.1016/j.palaeo.2016.04.015.
  • 67. Vaks A, Bar-Matthews M, Ayalon A, Matthews A, Frumkin A, Dayan U, Halicz L, Almogi-Labinb A and Schilman B, 2006. Paleoclimate and location of the border between Mediterranean climate region and the Saharo–Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249(3–4): 384–399, DOI: 10.1016/j.epsl.2006.07.009.
  • 68. Vaks A, Woodhead J, Bar-Matthews M, Ayalon A, Cliff RA, Zilberman T, Matthews A and Frumkin A, 2013. Pliocene–Pleistocene climate of the northern margin of Saharan–Arabian Desert recorded in speleothems from the Negev Desert, Israel. Earth and Planetary Science Letters 368: 88–100, DOI: 10.1016/j.epsl.2013.02.027.
  • 69. Van Couvering JA, 1996. The Pleistocene Boundary and the Beginning of the Quaternary. American Museum of Natural History, New York, DOI: 10.1017/CBO9780511585760.
  • 70. Vreča P, Kanduč T, Žigon S and Trkov Z, 2005. Isotopic composition of precipitation in Slovenia in: Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate. Final report of a coordinated research project 2000–2004. International Atomic Energy Agency. IAEA-TECDOC-1453, WEB site: <https://www.-pub.iaea.org/MTCD/publications/PDF/te_1453_web.pdf>.
  • 71. Wang P, Tian J and Lourens LJ, 2010. Stack of stable carbon and oxygen isotope record for Mediterranean Sea sediments. Earth and Planetary Science Letters 290(3–4): 319–330, DOI: 10.1594/PANGAEA.790006.
  • 72. Williams PW, Marshall A, Ford DC and Jenkinson AV, 1999. Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand. The Holocene 9: 649–657, DOI: 10.1191/095968399673119429.
  • 73. Zacwijn WH, 1974. The Pliocene–Pleistocene boundary in western and southern Europe. Boreas 3(3): 75–97, DOI: 10.1111/j.1502-3885.1974.tb00666.x.
  • 74. Zupan Hajna N, Bosák P, Pruner P, Mihevc A, Hercman H and Horáček I, 2020. Karst sediments in Slovenia: Plio-Quaternary multi-proxy records. Quaternary International 546: 4–19, DOI: 10.1016/j.quaint.2019.11.010.
  • 75. Zupan Hajna N, Mihevc A, Bosák P, Pruner P, Hercman H, Horáček I, Wagner J, Čermák S, Pawlak J, Sierpień P, Kdýr Š, Juřičková L and Švara A, 2021. Pliocene to Holocene chronostratigraphy and paleoenvironmental records from cave sediments: Račiška pečina section (SW Slovenia). Quaternary International, DOI: 10.1016/j.quaint.2021.02.035.
  • 76. Zupan Hajna N, Mihevc A, Pruner P and Bosák P, 2008. Palaeomagnetism and magnetostratigraphy of karst sediments in Slovenia. Carsologica 8: 1–266, ZRC Publishing, Postojna–Ljubljana.
  • 77. Zupan Hajna N, Mihevc A, Pruner P and Bosák P, 2010. Palaeomagnetic research on karst sediments in Slovenia. International Journal of Speleology 39(2): 47–60, DOI: 10.5038/1827-806X.39.2.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eebe995-3f5e-4970-bb39-b678705bca2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.