PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hemp Shive-Based Bio-Composites Bounded by Potato Starch Binder: The Roles of Aggregate Particle Size and Aspect Ratio

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to European regulations, the construction industry supports and strives to save non-renewable natural resources, increases the share of reusable resources in production and attempts to use renewable natural resources as much as possible by creating alternative building materials, such as bio-composites. Various building materials containing hemp shives (HS) are relatively popular and are often used in practice. The properties of these materials vary widely due to the usage of significantly different binders and because the parameters of the HS can significantly affect the properties of the bio-composite. Potato starch (PS), the properties of which have not been studied extensively in the past, was used as a binder in this study. Depending on the type of manufacturing process and technology employed for hemp fibre production, the HS particle shape and size can vary widely, which leads to the following statement: the properties of bio-composites produced by using the same method, but with different HS, may differ significantly. In order to investigate the effects of HS on the properties of bio-composites, including the hydro-thermal properties, an in-depth study was conducted to examine the structure, the physical properties and the particle size of HS. It was discovered that in order to obtain a material of higher compressive strength, the HS with smaller dimensions should be used; however, if enhanced thermal properties are required, the HS with longer particles should be used.
Rocznik
Strony
220--234
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Institute of Materials and Structures, Riga Technical University, Kalku 1, LV-1658, Riga, Latvia
autor
  • Institute of Materials and Structures, Riga Technical University, Kalku 1, LV-1658, Riga, Latvia
  • Institute of Building Materials, Vilnius Gediminas Technical University, Sauletekio Av. 11, LT-10223, Vilnius, Lithuania
autor
  • Institute of Materials and Structures, Riga Technical University, Kalku 1, LV-1658, Riga, Latvia
Bibliografia
  • 1. Alhaik G., Dubois V., Wirquin E., Leblanc A., Aouad G. 2018. Evaluate the influence of starch on earth/hemp or flax straws mixtures properties in presence of superplasticizer. Construction and Building Materials, 186, 762–772. https://doi.org/10.1016/j.conbuildmat.2018.07.209
  • 2. Ashok A., Abhijith R., Rejeesh C.R. 2018. Material characterization of starch derived bio degradable plastics and its mechanical property estimation. In Materials Today: Proceedings. Elsevier Ltd. 5, 2163–2170. https://doi.org/10.1016/j.matpr.2017.09.214
  • 3. Avérous L. 2004. Biodegradable multiphase systems based on plasticized starch: A review. Journal of Macromolecular Science - Polymer Reviews. Taylor & Francis Group. https://doi.org/10.1081/MC-200029326
  • 4. Baishya P., Maji T.K. 2018. A Comparative study on the properties of graphene oxide and activated carbon based sustainable wood starch composites. International Journal of Biological Macromolecules, 115, 970–977. https://doi.org/10.1016/j.ijbiomac.2018.04.192
  • 5. Balčiunas G., Vejelis S., Vaitkus S., Kairyte A. 2013. Physical properties and structure of composite made by using hemp hurds and different binding materials. Procedia Engineering, 57, 159–166. https://doi.org/10.1016/j.proeng.2013.04.023
  • 6. Bénézet J.C., Stanojlovic-DavidovicA., Bergeret A., Ferry L., Crespy A. 2012. Mechanical and physical properties of expanded starch, reinforced by natural fibres. Industrial Crops and Products, 37(1), 435–40. https://doi.org/10.1016/j.indcrop.2011.07.001
  • 7. Sandrine B., Umurigirwa, Vroman I., Hoang M.T., Maalouf C. 2015. Influence of chemical modification on hemp-starch concrete. Construction and Building Materials, 81, 208–215. https://doi.org/10.1016/j.conbuildmat.2015.02.045
  • 8. Bergeret A., Benezet J.C. 2011. Natural fibre-reinforced biofoams. International Journal of Polymer Science 2011. https://doi.org/10.1155/2011/569871
  • 9. Bourdot A., Moussa T., Gacoin A., Maalouf C., Vazquez P., Thomachot-Schneider C., Bliard C., et al. 2017. Characterization of a hemp-based agromaterial: influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy and Buildings, 153, 501–512. https://doi.org/10.1016/j.enbuild.2017.08.022
  • 10. BS EN 622-4:2019 Fibreboards. Specifications Requirements for Softboards - European Standards. n.d. Accessed May 26, 2021. https://www.en-standard.eu/bs-en-622-4-2019-fibreboards-specifications-requirements-for-softboards/
  • 11. BS EN 12667:2001 Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Products of High and Medium Thermal Resistance - European Standards. n.d. Accessed May 27, 2021. https://www.en-standard.eu/bs-en-12667-2001-thermal-performance-of-building-materials-and-products-determination-of-thermal-resistance-by-means-of-guarded-hot-plate-and-heat-flow-meter-methods-products-of-high-and-medium-thermal-resistance/?gclid=Cj0KCQjwhr2FBhDbARIsACjwLo1pb8NrtU8p6ioZmL1LkJ1QyFoZK8Y-qush6an-Nv1B59IbEQqtNMCoaAt6REALw_wcB
  • 12. Cigasova J., Stevulova N., Junak J. 2013. Influence of binder nature on properties of lightweight composites based on hemp hurds. International Journal of Modern Manufacturing Technologies, 5. Journal of Ecological Engineering 2022, 23(2), 220–234
  • 13. Collet F., Marjorie B., Serres L., Miriel J. 2008. Porous Structure and Water Vapour Sorption of Hemp-Based Materials. Construction and Building Materials, 22 (6), 1271–1280. https://doi.org/10.1016/j.conbuildmat.2007.01.018
  • 14. Collet F., Chamoin J., Pretot S., Lanos C. 2013. Comparison of the Hygric Behaviour of Three Hemp Concretes. Energy and Buildings, 62, 294–303. https://doi.org/10.1016/j.enbuild.2013.03.010
  • 15. Delville J., Joly C., Dole P., Bliard C. 2003. Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53(4), 373–381. https://doi.org/10.1016/S0144-8617(03)00141-3
  • 16. Dicker M.P.M., Duckworth P.F., Baker A.B., Francois G., Hazzard M.K., Weaver P.M. 2014. Green Composites: A Review of Material Attributes and Complementary Applications. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2013.10.014
  • 17. EN 826:2013 - Thermal Insulating Products for Building Applications - Determination of Compression. (Accessed: May 27, 2021). https://standards.iteh.ai/catalog/standards/cen/f54055a6-cacc-4d69-b85a-b190aea8ed7f/en-826-2013
  • 18. Fazio D.D., Cuomo S., Boccarusso L., Pinto F., Durante M., Meo M. 2019. Design and characterization of hybrid hemp/carbon laminates with improved impact resistance. Materials Today: Proceedings, 34, 194–201. https://doi.org/10.1016/j.matpr.2020.02.732
  • 19. Balthasar F., Sarasini F., Tirillò J., Touchard F., Chocinski-Arnault L., Mellier D., Panzer N., et al. 2019. Impact Damage Assessment in Biocomposites by Micro-CT and Innovative Air-Coupled Detection of Laser-Generated Ultrasound. Composite Structures, 210, 922–931. https://doi.org/10.1016/j.compstruct.2018.12.013
  • 20. Follain N., Joly C., Dole P., Bliard C. 2005. Mechanical Properties of Starch-Based Materials. I. Short Review and Complementary Experimental Analysis. Journal of Applied Polymer Science, 97(5), 1783–1794. https://doi.org/10.1002/app.21664
  • 21. Gironès J., López J.P., Mutjé P., Carvalho A.J.F., Curvelo A.A.S., Vilaseca F. 2012. Natural Fiber- Reinforced Thermoplastic Starch Composites Obtained by Melt Processing. Composites Science and Technology, 72(7), 858–863. https://doi.org/10.1016/j.compscitech.2012.02.019
  • 22. Hedayati S., Niakousari M. 2018. Microstructure, Pasting and Textural Properties of Wheat Starch-Corn Starch Citrate Composites. Food Hydrocolloids, 81, 1–5. https://doi.org/10.1016/j.foodhyd.2018.02.024
  • 23. Hussain A., Calabria-Holley J., Lawrence M., Yunhong Jiang. 2019. Hygrothermal and Mechanical Characterisation of Novel Hemp Shiv Based Thermal Insulation Composites. Construction and Building Materials, 212, 561–568. https://doi.org/10.1016/j.conbuildmat.2019.04.029
  • 24. Jiang Y., Lawrence M., Hussain A., Ansell M., Walker P. 2019. Comparative moisture and heat sorption properties of fibre and shiv derived from hemp and flax. Cellulose 26(2), 823–843. https://doi.org/10.1007/s10570-018-2145-0
  • 25. Kairyte A., Vaitkus S., Kremensas A., Kairytė A., Vėjelis S. 2018. Physical-mechanical properties of composites from hemp shives and starch odontogenic maxillary sinusitis view project physical-mechanical properties of composites from hemp shives and starch. www.ijesi.org||Volumewww.ijesi.org
  • 26. Hamzé K., Maalouf C., Bliard C., Gacoin A., Wakil N.E., Polidori G. 2019. Characterization of Beet- Pulp Fiber Reinforced Potato Starch Biopolymer Composites for Building Applications. Construction and Building Materials, 203, 711–721. https://doi.org/10.1016/j.conbuildmat.2019.01.127
  • 27. Kremensas A., Kairyte A., Vaitkus S., Vejelis S., Balčiunas G. 2019. Mechanical Performance of Biodegradable Thermoplastic Polymer-Based Biocomposite Boards from Hemp Shivs and Corn Starch for the Building Industry. Materials. https://doi.org/10.3390/ma12060845
  • 28. Kremensas A., Kairytė A., Vaitkus S., Vėjelis S., Członka S., Strąkowska A. 2019. The Impact of Hot-Water-Treated Fibre Hemp Shivs on the Water Resistance and Thermal Insulating Performance of Corn Starch Bonded Biocomposite Boards. Industrial Crops and Products, 137, 290–299. https://doi.org/10.1016/j.indcrop.2019.05.031
  • 29. Kremensas A., Stapulioniene R., Vaitkus S., Kairyte A. 2017. Investigations on Physical-Mechanical Properties of Effective Thermal Insulation Materials from Fibrous Hemp. Procedia Engineering. 172, 586–594. https://doi.org/10.1016/j.proeng.2017.02.069
  • 30. Le A.T., Gacoin A., Li A., Mai T.H., Rebay M., Delmas Y. 2014a. Experimental investigation on the mechanical performance of starch-hemp composite materials. Construction and Building Materials 61, 106–113. https://doi.org/10.1016/j.conbuildmat.2014.01.084
  • 31. Le A.T., Gacoin A., Li A., Mai T.H., Rebay M., Delmas Y. 2014b. Experimental Investigation on the Mechanical Performance of Starch-Hemp Composite Materials. Construction and Building Materials 61, 106–113. https://doi.org/10.1016/j.conbuildmat.2014.01.084
  • 32. Le A.T., Gacoin A., Li A., Mai T.H., Wakil N.E. 2015. Influence of Various Starch/Hemp Mixtures on Mechanical and Acoustical Behavior of Starch-Hemp Composite Materials. Composites Part B: Engineering, 75, 201–211. https://doi.org/10.1016/j.compositesb.2015.01.038
  • 33. Liu Y., Chen J., Luo S., Li C., Ye J., Liu C., Gilbert R.G. 2017. Physicochemical and Structural Properties of Pregelatinized Starch Prepared by Improved Extrusion Cooking Technology. Carbohydrate Polymers, 175, 265–272. https://doi.org/10.1016/j.carbpol.2017.07.084
  • 34. Løland K.E. 1980. Continuous Damage Model for Load-Response Estimation of Concrete. Cement and Concrete Research, 10(3), 395–402. https://doi.org/10.1016/0008-8846(80)90115-5
  • 35. Mazhoud B., Collet F., Pretot S., Lanos C. 2017. Mechanical Properties of Hemp-Clay and Hemp Stabilized Clay Composites. Construction and Building Materials, 155, 1126–1137. https://doi.org/10.1016/j.conbuildmat.2017.08.121
  • 36. Pickering K.L., Aruan Efendy M.G., Le T.M. 2016. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2015.08.038
  • 37. Pinto F., Boccarusso L., Fazio D.D., Cuomo S., Durante M., Meo M. 2020. Carbon/Hemp Bio- Hybrid Composites: Effects of the Stacking Sequence on Flexural, Damping and Impact Properties. Composite Structures, 242, 112148. https://doi.org/10.1016/j.compstruct.2020.112148
  • 38. Sassoni E., Manzi S., Motori A., Montecchi M., Canti M. 2014. Novel Sustainable Hemp-Based Composites for Application in the Building Industry: Physical, Thermal and Mechanical Characterization. Energy and Buildings, 77, 219–226. https://doi.org/10.1016/j.enbuild.2014.03.033
  • 39. Billy S., Magniont C., Lorente S. 2019. Characterization of a Precast Hemp Concrete. Part I: Physical and Thermal Properties. Journal of Building Engineering, 24, 100540. https://doi.org/10.1016/j.jobe.2018.07.016
  • 40. Walker R., Pavia S., Mitchell R. 2014. Mechanical Properties and Durability of Hemp-Lime Concretes. Construction and Building Materials, 61, 340–348. https://doi.org/10.1016/j.conbuildmat.2014.02.065
  • 41. Xie F., Halley P.J., Avérous L. 2012. Rheology to Understand and Optimize Processibility, Structures and Properties of Starch Polymeric Materials. Progress in Polymer Science (Oxford). https://doi.org/10.1016/j.progpolymsci.2011.07.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eea68ec-7b37-47c3-9230-ab59e64a620a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.