PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of precise aircraft positioning in the gps system with an application of the troposphere correction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of studies concerning the designation of accuracy in aircraft navigation positioning by means of the SPP and the SBAS code methods. The examination of the aircraft positioning accuracy was made in the aspect of the use of tropospheric correction in observation equations of the SPP and the SBAS positioning methods. The accuracy of the coordinates of the aircraft in the SPP and the SBAS solutions was referenced to the DGPS reference solution. The investigations were conducted on raw observation data and GPS navigation data in an air test in Dęblin. Based on the conducted calculations, it was proved that the lack of use of tropospheric correction in the SPP method causes an error in an aircraft position up to 18.5 m, and in the SBAS method up to 23.2 m. In addition, the statistical measure of RMS accuracy in the absence of applying the tropospheric correction in the SPP method results in an accuracy decrease to 8.6 m, and in the SBAS method to 12.2 m, accordingly.
Rocznik
Tom
Strony
73--84
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Military University of Aviation, Institute of Navigation, Dywizjonu 303 nr 35 Street, 08-521 Dęblin, Poland
  • Military University of Aviation, Institute of Navigation, Dywizjonu 303 nr 35 Street, 08-521 Dęblin, Poland
autor
  • Military University of Aviation, Institute of Navigation, Dywizjonu 303 nr 35 Street, 08-521 Dęblin, Poland
Bibliografia
  • 1. Bakuła M. 2007. “Static Network Code DGPS Positioning vs. Carrier Phase Single Baseline Solutions For Short Observation Time and Medium-Long Distances”. Artificial Satellites 42(3): 167-183. DOI: 10.2478/v10018-008-0009-9.
  • 2. Bakuła M. 2010. “Network code DGPS positioning and reliable estimation of position accuracy”. Survey Review 42(315): 82-91. DOI: 10.1179/003962610X12572516251448.
  • 3. Bosy J. 2005. “Precise processing of satellite GPS observations in local networks located in mountain areas”. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu 522. ISSN: 0867-7964.
  • 4. Ciećko A. 2019. “Analysis of the EGNOS quality parameters during high ionosphere activity”. IET Radar, Sonar & Navigation 13(7): 1131-1139. DOI: 10.1049/iet-rsn.2018.5571.
  • 5. Grzegorzewski M., W. Jaruszewski, A. Fellner, S. Oszczak, A. Wasilewski, Z. Rzepecka, J. Kapcia, T. Popławski. 1999. “Preliminary results of DGPS/DGLONASS aircraft positioning in flight approaches and landings”. Annual of Navigation 1: 41-53.
  • 6. Grzegorzewski M. 2005. “Navigating an aircraft by means of a position potential in three dimensional space”. Annual of Navigation 9: 1-11.
  • 7. Grzegorzewski M., A. Ciećko, S. Oszczak, D. Popielarczyk. 2008. “Autonomous and EGNOS positioning accuracy determination of cessna aircraft on the edge of EGNOS coverage”. Proceedings of the 2008 National Technical Meeting of the Institute of Navigation. San Diego, CA. January 2008. P. 407-410.
  • 8. Hofmann-Wellenhof B., H. Lichtenegger, E. Wasle. 2008. GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo and More. Springer Wien NewYork, Wien, Austria. ISBN: 978-3-211-73012-6.
  • 9. Kleijer F. 2004. Troposphere Modeling and Filtering for Precise GPS Leveling. PhD thesis. Department of Mathematical Geodesy and Positioning, Delft University of Technology. Kluyverweg 1, P.O. Box 5058, 2600 GB DELFT, the Netherlands. 260 p.
  • 10. Li L., Jia C., Zhao L., Cheng J., Liu J., Ding J. 2016. “Real-time single frequency precise point positioning using SBAS corrections”. Sensors 16(8). DOI: 10.3390/s16081261.
  • 11. MOPS. 1998. Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment. Document No. RTCA/DO-229A, June 8, 1998, prepared by SC-159.
  • 12. Pan L., C. Cai, J. Zhu, X. Cui. 2019. „Kinematic absolute positioning with quad-constellation GNSS”. Kinematics - Analysis and Applications. Joseph Mizrahi, IntechOpen. DOI: 10.5772/intechopen.86368. Available in: https://www.intechopen.com/books/kinematics-analysis-and-applications/kinematic-absolute-positioning-with-quad-constellation-gnss.
  • 13. Przestrzelski P., M. Bakuła. 2014. “Performance of real time network code DGPS services of ASG-EUPOS in North-Eastern Poland”. Technical Sciences 17(3): 191-207.
  • 14. Rodríguez-Bilbao I., S. M. Radicella, G. Rodríguez-Caderot, M. Herraiz. 2015. “Precise point positioning performance in the presence of the 28 October 2003 sudden increase in total electron content”. Space Weather 13: 698-708. DOI: 10.1002/2015SW001201.
  • 15. Sanz Subirana J., Juan Zornoza J.M., Hernández-Pajares M. 2013. GNSS Data Processing. Vol. I: Fundamentals and Algorithms. Publisher: ESA Communications, ESTEC, Noordwijk, Netherlands. ISBN: 978-92-9221-886-7. ESA TM-23/1.
  • 16. Seeber G. 2003. Satellite Geodesy – 2nd completely revised and extended edition. Walter de Gruyter GmbH & Co. KG, 10785 Berlin, Germany. ISBN: 3-11-017549-5.
  • 17. Takasu T. 2013. RTKLIB ver. 2.4.2 Manual, RTKLIB: an open source program package for GNSS positioning. Available at: http://www.rtklib.com/prog/manual_2.4.2.pdf.
  • 18. Scilab. Available at: https://www.scilab.org/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ee6cce6-89e4-4b49-ae01-bc858f985a5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.