Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the main sources of novel chemicals with possible medical use is medicinal plants. Multiple diseases have been treated with them in traditional medicine. The purpose of this study was to explore the phytochemical characteristics, antioxidant effects, and antibacterial activities of several extracts of Ziziphus lotus fruits (ZLF). Phytochemical analysis of ZLF extracts revealed the presence of several bioactive molecules such as phenolic compounds and alkaloids. Water, methanol 50%, methanol 80%, methanol, ethanol, and hexane are the 6 different solvents which were used in order to evaluate the phytochemical profile as well as the biological activities of ZLF, and whose aqueous extract showed the best results. The aqueous extract had the highest yield, followed by methanol, ethanol, and lastly hexane (p < 0.05). The aqueous extract showed the highest total contents of phenols, flavonoids, and tannins (77.13 ± 0.11 mg GAE /g DM, 33.36 ± 0.51 mg QE/g DM, and 03.72 ± 0.16 mg CE/g DM respectively), while the Hexane extract revealed the lowest contents (12.36 ± 0.26 mg GAE/g DM, 06.20 ± 0.23 mg QE/g DM, and 01.20 ± 0.10 mg CE/g DM respectively). By using the DPPH, ABTS, and FRAP methods, and for the aqueous extract, ZLF extracts demonstrated considerable antioxidant capacities, with the values IC50 = 37 ± 0.27, IC50 = 67 ± 0.18 and IC0.5 = 31 ± 0.22 respectively. All of the ZLF extracts, with the exception of the hexanic extract on Staphylococcus aureus, showed antibacterial efficacy against the bacterial strains of Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The results obtained reveal that ZLF exhibit significant biochemical composition and considerable biological activities encouraging its nutritional and therapeutic use.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
377--388
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
autor
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, B.P. 523, Béni Mellal, Morocco
autor
- Laboratory of Physical Chemistry of Materials LCPM, Faculty of Sciences Ben M’sick, Hassan II University of Casablanca, Regional Academy of Education and Training, Casablanca-Settat
autor
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
autor
- Advanced Materials, Structures and Civil Engineering Team, ENSA Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
autor
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
Bibliografia
- 1. Adebayo, S., Ondua, M., Shai, L., Lebelo, S. 2019. Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants. J. Inflamm. Res. 195–203.
- 2. Adedeji, A.A., Olubukola, O.B. 2020. Secondary metabolites as plant defensive strategy: A large role for small molecules in the near root region. Planta 252(4), 61.
- 3. Ait Bouzid H., El Hassan S., Laila, B., Mohamed I., Ahmed Z., Jamila G., Jamal K., Khalid M., and Saïd, G. 2022. Physical fruit traits, proximate composition, antioxidant activity, and profiling of fatty acids and minerals of wild jujube (Ziziphus Lotus L. (Desf.)) Fruits from Eleven Moroccan Origins. J. Food Qual. 1–15.
- 4. Anand, U., Nadia J.H., Ammar A., Naoufal L. 2019. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites (11), 258.
- 5. Bajčan, D., Luboš H., Diana H., Dominika B. 2013. Optimizing conditions for spectrophotometri determination of total polyphenols in wines using folinciocalteu reagent. J. Microbiol. Biotechnol. Food Sci. 2, 1271–80.
- 6. Ben Mahmoud, K., Hanen W., Rim B.M., Jemai N., Selmi S., Jemmali A., and Ksouri R. 2022. Antidiabetic, antioxidant and chemical functionalities of Ziziphus Jujuba (Mill.) and Moringa Oleifera (Lam.) Plants Using Multivariate Data Treatment. S. Afr. J. Bot. 144, 219–28.
- 7. Bencheikh, N., Bouhrim, M., Merrouni I.A., Boutahiri S., Kharchoufa, L., Addi M., Tungmunnithum, D., Hano, C., Eto, B., Legssyer, A., Elachouri, M. 2021. Antihyperlipidemic and antioxidant activities of flavonoid-rich extract of Ziziphus Lotus (L.) Lam. Fruits. Appl. Sci. 11(17), 7788.
- 8. Bucekova, M., Jardekova, L., Juricova, V., Bugarova, V., Gabriele, D.M., Gismondi A., Leonardi, D., Farkasovska, J., Godocikova, J., Laho, M., Klaudiny, J., Majtan, V., Canini, A. Majtan, J. 2019. Antibacterial activity of different blossom honeys: New findings. Molecules 24(8), 1573.
- 9. Cadi, H.E., Hajar, E.B., Selama G., Asmae, E.C., Ramdan B., Yassine, O.E., M., Alibrando, F., 2020. Physico-chemical and phytochemical characterization of moroccan wild jujube “Zizyphus Lotus (L.)” Fruit Crude Extract and Fractions. Molecules 25(22), 5237.
- 10. Chakit, M., Rezklah, B., Aboubaker, E.H., Youssef, B., Redouan, N., Hicham, E.M., Mesfioui A. 2022. Antiurolithiatic activity of aqueous extract of Ziziphus Lotus on Ethylene Glycol-Induced Lithiasis in Rats. Pharmacogn. J. 14(5), 596–602.
- 11. Chebli, Y., Samira, E.O., Elame, F., Moula N., Chentouf M., Hornick, J.L., Cabaraux, J.F. 2021. Silvopastoral system in Morocco: Focus on their importance, strategic functions, and recent changes in the mediterranean side. Sustainability 13(19),10744.
- 12. Cheng, D.B., Zhang, X.H., Gao, Y.J, Lei, J., Dayong, H., Wang, Z., Wanhai, X., Qiao, Z.Y., Wang, H. 2019. Endogenous reactive oxygen speciestriggered morphology transformation for enhanced cooperative interaction with mitochondria. J. Am. Chem. Soc. 141(18), 7235–39.
- 13. Choi, Y.H., Lee, J.Y, Lee, J. E., Jung, Y.W, Jeong, W., Hong, S.S., Cho, Y.R, Choi, C.W. 2020. Skinrelated properties and constituents from the aerial parts extract of persicaria senticosa. Edited by Kyoung Mi Moon. Oxid. Med. Cell. Longev. 1–9.
- 14. Dahibhate, N., Ankush, S., Kundan, K. 2019. Mangrove plants as a source of bioactive compounds: A review. J. Nat. Prod. 86–97(12).
- 15. Dahlia, F., Barouagui, S., Houari, H., Bousaadia, D., Rahmoune, B. 2020a. Influence of environment variations on anti-glycaemic, anti-cholesterolemic, antioxidant and antimicrobial activities of natural wild fruits of Ziziphus Lotus (L.). S. Afr. J. Bot. 132, 215–25.
- 16. El Maaiden, E., Youssef, E.K., Lamaoui, M., Allai L., Essamadi, A.K., Nasser, B., Moustaid, K. 2020. Variation in minerals, polyphenolics and antioxidant activity of pulp, seed and almond of different Ziziphus species grown in Morocco. Braz. J. Food Technol,e 2019206.
- 17. El Maaiden, E., Youssef, E.K, Moustaid, K., Essamadi, A.K., Nasser, B. 2019. Comparative Study of phytochemical profile between Ziziphus Spina Christi and Ziziphus Lotus from Morocco. J. Food Meas. Charact. 13(1), 121–30.
- 18. El Yakoubi, N., Ennami, M., Zineb, E.A., Farida, A.L., Bounab, L., Mohammed, E.K., Brahim, E.B. 2023. Utilization of Ziziphus Lotus fruit as a potential biosorbent for lead (II) and cadmium (II) ion removal from aqueous solution. Ecol. Eng. Environ. Tech. 24(3), 135–46.
- 19. Ghazouani, N., Manef A., Bouajila J. 2015. Teucrium Ramosissimum (Lamiaceae): Volatile composition, seasonal variation, and pharmaceutical activity. Anal. Lett. 49(8), 1258–71.
- 20. Hamada, D.S., Afifa Z.B., Allaoui, M., Hadjadj, S., Ladjel, S., Hichem, B.J. 2023. Fatty acids composition, total phenolics content, antioxidant and antibacterial activities of algerian Ziziphus Lotus L. Fruit Oil. Chem. Afr.
- 21. Kapoor, D., Simranjeet, S., Vijay, K., Romina, R., Ram, P., Joginder, S. 2019. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 100182.
- 22. Kebede, B.H., Sirawdink, F.F., Yetenayet, B.T. 2021. Tessema, As. Free radical scavenging capacity, antibacterial activity and essential oil composition of turmeric (Curcuma Domestica) varieties grown in Ethiopia. Heliyon, e06239.
- 23. Kopaczyk, J.M, Joanna, W., Tomasz, J. 2020. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 180, 104197.
- 24. Kumar, S., Rajni, S., Priyanka, S., Vikas, K., Rakesh, S. 2022. Plant secondary metabolites: Their food and therapeutic importance. Plant Secondary Metabolites (PSMs): Physico-Chemical Properties and Therapeutic Applications, 371–413.
- 25. Lee, S., Jonathan, S. 2022. Isolation and biological activity of azocine and azocane alkaloids. Bioorg. Med. Chem. 54, 116560.
- 26. Letaief, T., Stefania, G., Valentina, L.M., Jamel, M., Manef, A., Antonio, T., Elisa, O. 2021. Chemical composition and biological activities of Tunisian Ziziphus Lotus extracts: Evaluation of drying effect, solvent extraction, and extracted plant parts. Plants 10(12), 2651.
- 27. Liao, Z., Damien, C., Nguan, S.T. 2019. Reactive oxygen species: A volatile driver of field cancerization and metastasis. Mol. Cancer. 18(1), 65.
- 28. Marmouzi, I., Mourad, K., Meryem, E.J., Bouyahya, A., Cherrah, Y., Bouklouze, A., Heyden, Y.V., Faouzi, M.E.A. 2019. Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in Zizyphus Lotus leaves and fruits. Ind Crops Prod. 132, 134–39.
- 29. MayaCano, D.A, Sandra, A.V, Gloria, A.S.G. 2021. Phenolic compounds of blueberries (Vaccinium Spp) as a protective strategy against skin cell damage induced by ROS: A review of antioxidant potential and antiproliferative capacity. Heliyon 7(2), e06297.
- 30. Micoli, F., Fabio B., Rino R., Davide S. 2021. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol. 19(5), 287–302.
- 31. Moghaddam, M., Nasrin, F. 2019. Influence of environmental and genetic factors on resin yield, essential oil content and chemical composition of Ferula Assa-Foetida L. populations. J. Appl. Res. Med. Aromat. Plants 2(3), 69–76.
- 32. Nagarajan, J., Wong, W.H, Charis, M.G, Ramakrishnan, N.R, Mavinakere, E.R, Jian, S., Amin, I., Tey B.T, K.N.P. 2016. Extraction of phytochemicals using hydrotropic solvents. Sep. Sci. Technol. 51(7), 1151–65.
- 33. Nagegowda, D.A., Priyanka, G. 2020. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science 294, 110457.
- 34. Olszowy, M. 2019. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 144, 135–43.
- 35. Ozgen, S., Cernuschi, S., Caserini, S. 2021. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sust. Energ. Rev. 135, 110113.
- 36. Pandey, J., Tonking, B., Julu, T., Milu, T., Rabindra, K.R, Bhawana, D., Rabin, D.C., Ravin, B., Amrit, P. 2020. Estimation of total quercetin and rutin content in malus domestica of nepalese origin by HPLC method and determination of their antioxidative activity. J. Food Qual. 1–13.
- 37. Prasathkumar, M. 2021. Therapeutic and pharmacological efficacy of selective indian medicinal plants. Phytomed. Plus. 100029.
- 38. Rais, C., Driouch, A., Slimani, C., Bessi, A., Balouiri, M., Lahsen, E.G, Lazraq, A., Jamila, A.F. 2018. Antimicrobial and antioxidant activity of pulp extracts from three populations of Ziziphus Lotus L. Nutr. Food Sci. 49(6), 1014–28.
- 39. Redouan, F.Z, Guillermo, B., Rosa, M.P, Crisafulli, A., Yebouk, C., Bouhbal, M., Abdenbi, B.D, Kadiri, M., Joaquín, M.M, Merzouki, A. 2020. Traditional medicinal knowledge of apiaceae at talassemtane national park (Northern Morocco). S. Afr. J. Bot. 131, 118–30.
- 40. Ros, M., Carrascosa, J.M. Current nutritional and pharmacological anti-aging interventions. Biochim. Biophys. Acta, Mol. Basis Dis. 1866(3), 165612.
- 41. Sá, A.G.A, Moreno, Y.M.F, Carciofi, B.A.M. 2020. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci Technol. 97, 170–84.
- 42. Sakna, S.T., Maghraby, Y.R., Abdelfattah, M.S., Farag, M.A. 2022. Phytochemical diversity and pharmacological effects of triterpenes from Genus Ziziphus: A comprehensive review. Phytochem Rev.
- 43. Shabani, S., Zahra, R., Hossein, A.K. Exploring the multifaceted neuroprotective actions of gallic acid: A review. Int. J. Food Prop. 23(1), 736–52.
- 44. Singh, S., Nandini, P., Eram, F., Arvind, S.N. 2021. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem. 226, 113839.
- 45. Süntar, I. 2020. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem Rev. 19(5), 1199–1209.
- 46. Sutrisno, I.H, Bachtiar, A., Zidni, I.N., Nuraini, N., Adi, B.S. 2020. Documentation of ritual plants used among the aceh tribe in peureulak, East Aceh District, Biodivers. J. 21(11).
- 47. Suwanwong, Y., Somchai, B. 2021. Phytochemical contents, antioxidant activity, and anticancer activity of three common guava cultivars in thailand. Eur. J. Integr. Med. 42, 101290.
- 48. Wahida, B., Bouraoui, A., Chouchane, N. 2007. Antiulcerogenic activity of Zizyphus Lotus (L.) Extracts. J. Ethnopharmacol. 112(2), 228–31.
- 49. Xu, M., Lu R., Ning, C., Xiaowei, F., Dabing, R., Lunzhao, Y. 2019. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 297, 124970.
- 50. Yadav, S., Dhruvi, S., Parmeswar, D., Reena, A.R. 2023. The tale of antibiotics beyond antimicrobials: expanding horizons. Cytokine 169, 156285.
- 51. Yahia, Y., Mohamed, A.B., Nizar, T., Mohamed, B., Kameleddine, N. 2023. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. Species. PLoS One 15(5), e0232599.
- 52. Yakoubi, N.E, Mounia, E., Zineb, N.E, Loubna, B., Farida A.L., Mohammed, L.E.K., Brahim, E.B. 2023. Removal of Cd(II) and Pb(II) from aqueous solution using Ziziphus Lotus leaves as a potential biosorbent. Desalination Water Treat. 300, 65–74.
- 53. Zeb, A.A. 2021. Comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res. Int. 143, 110312.
- 54. Zhang, Y.Y, Elnur, E., Zhi, J.N., Fan, Z., Kiran, T., Shaoyun, W., Zhang, J.G., Wei, Z.J. 2022. LC-MS/ MS targeting analysis of terpenoid metabolism in carya cathayensis at different developmental stages. Food Chem. 366, 130583.
- 55. Zihad, S.M. Neamul, K., Shaikh, J.U., Nazifa, S., Farhana, L., Razina, R., Jamil, A.S., Bassem, Y.S., Ulf G. 2021. Antioxidant properties and phenolic profiling by UPLC-QTOF-MS of Ajwah, Safawy and Sukkari cultivars of date palm. Biochem. Biophys. Rep. 25, 100909.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ee5e2c1-d8da-4a92-9c76-aabf9b4e34d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.