PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

DOC and POC in the water column of the southern Baltic. Part I, Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organic substances are important components of the marine environment as they determine the properties of seawater and the key biogeochemical processes taking place in it. Organic carbon (OC) is a measure of organic matter. For practical purposes, OC is divided into dissolved organic carbon (DOC) and particulate organic carbon (POC). Both DOC and POC play a major role in the carbon cycle, especially in shelf seas like the Baltic, where their concentrations are substantial. In a three-year study (2009-2011) seawater samples for DOC and POC measurements were collected from stations located in the Gdańsk Deep, the Gotland Deep and the Bornholm Deep. The accuracy and precision of analysis were satisfactory; the recovery was better than 95%, and the relative standard deviation was 4% (n = 5). Concentrations of chlorophyll a, phaeopigment a, salinity, pH and temperature were also measured in the same samples. These parameters were selected as proxies of processes contributing to DOC and POC abundance. The aim of the study was to address questions regarding the vertical, horizontal and seasonal dynamics of both DOC and POC in the Baltic Sea and the factors influencing carbon concentrations. In general, the highest concentrations of both DOC and POC were recorded in the surface water layer (DOC ~4.7 mg dm-3, POC ~0.6 mg dm-3) as a consequence of intensive phytoplankton activity, and in the halocline layer (DOC ~5.1 mg dm-3, POC ~0.4 mg dm-3). The lowest DOC and POC concentrations were measured in the sub-halocline water layer, where the values did not exceed 3.5 mg dm-3 (DOC) and 0.1 mg dm-3 (POC). Seasonally, the highest DOC and POC concentrations were measured during the growing season: surface DOC ~5.0 mg dm-3; sub-halocline DOC ~4.1 mg dm-3 and surface POC ~0.9 mg dm-3, sub-halocline POC ~0.2 mg dm-3. The ANOVA Kruskal-Wallis test results indicate statistically significant differences among the three study sites regarding average concentrations, and concentrations in particular water layers and seasons. It shows that concentrations of DOC and POC differ in sub-basins of the Baltic Sea. The differences were attributed to the varying distances from river mouths to study sites or the different starting times and/or durations of the spring algal blooms. Statistically significant dependences were found between both DOC and POC concentrations and Chl a (phytoplankton biomass), pH (phytoplankton photosynthetic rate), pheo (zooplankton sloppy feeding), salinity (river run-off and North Sea water inflows) and water temperature (season). This was taken as proof that these factors influence DOC and POC in the study areas.
Czasopismo
Rocznik
Strony
523--548
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
  • [1]. Almroth-Rosell E., Eilola K., Hordoir R., Meier M.H. E, Hall P. O. J., 2011, Transport of fresh and resuspended particulate organic material in the Baltic Sea - a model study, J. Mar. Sys., 87 (1), 1-12, http://dx.doi.org/10.1016/j.jmarsys.2011.02.005
  • [2]. Amann T., Weiss A., Hartmann J., 2012, Carbon dynamics in the freshwater part of the Elbe estuary, Germany: Implications of improving water quality, Estuar. Coast. Shelf Sci., 107, 112-121, http://dx.doi.org/10.1016/j.ecss.2012.05.012
  • [3]. Andrulewicz E., Szymelfenig M., Urbański J., Węsławski J.M, 1998, Morze Bałtyckie - o tym warto wiedzieć, Zesz. Zielonej Akad., 7, 1-115.
  • [4]. Bianchi T. S., Demetropoulos A., Hadjichristophorou M., Argyrou M., Baskaran M., Lambert C., 1996, Plant pigments as biomarkers of organic matter sources in sediments and coastal waters of Cyprus (eastern Mediterranean), Estuar. Coast. Shelf Sci., 42, 103-115, http://dx.doi.org/10.1006/ecss.1996.0008
  • [5]. Burska D., Pryputniewicz D., Falkowska L., 2005, Stratification of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea), Oceanologia, 47, 201-217.
  • [6]. Björck S., 1995, A review of the history of the Baltic Sea, 13.0-8.0 ka BP, Quater. Int., 27, 19-40, http://dx.doi.org/10.1016/1040-6182(94)00057-C
  • [7]. Chester R., 2003, Marine geochemistry, 2nd edn., Blackwell Sci., London, 506 pp. Collos Y., Husseini-Ratrema J., Bec B., Vaquer A., Hoai T. L., Rougier C., Pons V., Souchu P., 2005, Phaeopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon, Hydrobiologia, 550 (1), 83-93, http://dx.doi.org/10.1007/s10750-005-4365-1
  • [8]. Dera J., 1992, Marine physics, Elsevier, Amsterdam, 515 pp.
  • [9]. Doney S. C., Linsay K., Moore J. K., 2003, Global ocean carbon cycle modeling, [in:] Ocean biogeochemistry, M. J. R. Doney (ed.), Springer-Verlag, Berlin, 217-238.
  • [10]. Dunalska J. A., Górniak D., Jaworska B., Geiser E. E., 2012, Effect of temperature on organic matter transformation in a different ambient nutrient availability, Ecol. Eng., 49, 27-34, http://dx.doi.org/10.1016/j.ecoleng.2012.08.023
  • [11]. Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2011, Numerical modelling of POC dynamics in the Baltic under possible future conditions determined by nutrients, light and temperature, Oceanologia, 53 (4), 971-992, http://dx.doi.org/10.5697/oc.53-4.971
  • [12]. Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Pempkowiak J., 2010, Particulate Organic Carbon in the southern Baltic Sea: numerical simulations and experimental data, Oceanologia, 52 (4), 621-648, http://dx.doi.org/10.5697/oc.52-4.621
  • [13]. Edman M., Omstedt A., 2013, Modeling the dissolved CO2 system in the redox environment of the Baltic Sea, Limnol. Oceanogr., 58 (1), 74-92, http://dx.doi.org/10.4319/lo.2013.58.1.0074
  • [14]. Emelyanov E., 1995, Baltic Sea: geology, geochemistry, paleoceanography, pollution, P.P. Shirshov Inst. Oceanol. Russian Acad. Sci., Kaliningrad, 119 pp.
  • [15]. Emerson S. R., Hedges J. I., 2008, Chemical oceanography and the marine carbon cycle, Cambridge Univ. Press, Cambridge, 453 pp., http://dx.doi.org/10.1017/CBO9780511793202
  • [16]. Ferrari G. M., Dowell M. D., Grossi S., Targa C., 1996, Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region, Mar. Chem., 55, 299-316, http://dx.doi.org/10.1016/S0304-4203(96)00061-8
  • [17]. Gardner W. D., Mishonova A. V., Richardson M. J., 2006, Global POC concentrations from in situ and satellite data, Deep-Sea Res. Pt. II, 53 (5-7), 718-740, http://dx.doi.org/10.1016/j.dsr2.2006.01.029
  • [18]. Granskog M. A., Kaartokallio H., Thomas D. N, Kuosa H., 2005, Influence of freshwater inflow on the inorganic nutrient and dissolved organic matter within coastal sea ice and underlying waters in the Gulf of Finland (Baltic Sea), Estuar. Coast. Shelf Sci., 65 (1-2), 109-122.
  • [19]. Grzybowski W., 2003, Are data on light-induced ammonium release from dissolved organic matter consistent?, Chemosphere, 52, 933-936, http://dx.doi.org/10.1016/S0045-6535(03)00290-X
  • [20]. Grzybowski W., Pempkowiak J., 2003, Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdańsk, Oceanologia, 45 (4), 693-704.
  • [21]. Gustafsson E., Deutsch B., Gustafsson B. G., Humborg C., Mörth C.-M., 2013, Carbon cycling in the Baltic Sea - the fate of allochthonous organic carbon and its impact on air-sea CO2 exchange, J. Marine Syst., 129, 289-302, http://dx.doi.org/10.1016/j.jmarsys.2013.07.005
  • [22]. Hagström Å., Azam F., Kuparinen J., Zweifel U. L., 2001, Pelagic plankton growth and resource limitations in the Baltic Sea, [in:] A systems analysis of the Baltic Sea, F. V. Wullf, L. A. Rahm & P. Larsson (eds.), Ecol. Stud., 148, 177-210.
  • [23]. Hakanson L., 1991, Charakterystyka fizycznogeograficzna zlewiska Morza Bałtyckiego, Środowisko Morza Bałtyckiego, 1, 1-37.
  • [24]. Hedges J. I., 2002, Why dissolved organic matter, [in:] Biogeochemistry of marine dissolved organic matter, D. A. Hansell & C. A. Carlson (ed.), Elsevier Sci., San Diego, 1-33.
  • [25]. Hansell D. A, 2002, DOC in the Global Ocean carbon cycle, [in:] Biogeochemistry of marine dissolved organic matter, D. A. Hansell &C. A. Carlson (eds), Elsevier Sci., San Diego, 685-715, http://dx.doi.org/10.1016/B978-012323841-2/50017-8
  • [26]. The BACC Author Team, 2008, The BALTEX Assessment of Climate Change for the Baltic Sea Basin, Springer-Verlag, Berlin, 1-34.
  • [27]. HELCOM, 2005, Nutrient pollution to the Baltic Sea in 2000, Baltic Sea Environ. Proc., 100, 24 pp.
  • [28]. HELCOM, 2006, Development of tools for assessment of eutrophication in the Baltic Sea, Baltic Sea Environ. Proc., 104, 64 pp.
  • [29]. HELCOM, 2007, Climate change in the Baltic Sea area, Baltic Sea Environ. Proc., 111, 54 pp.
  • [30]. Hoikkala L., Lahtinen T., Perttila M., Lignell R., 2012, Seasonal dynamics of dissolved organic matter on a costal salinity gradient in the northern Baltic Sea, Cont. Shelf Res., 45, 1-45, http://dx.doi.org/10.1016/j.csr.2012.04.008
  • [31]. IPCC, 2007, Climate Change Synthesis Report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 73 pp.
  • [32]. Jurkovskis A. K., Formych T. A., Grotanie B. J., 1976, Cikl izmienienij fosfora, azota i organiczeski sviazannogo uglieroda v Baltijskom Morie, Okieanologia, 16, 79-86.
  • [33]. Kouts T., Omstedt A., 1993, Deep water exchange in Baltic Proper, Tellus A, 45 (4), 311-324. http://dx.doi.org/10.1034/j.1600-0870.1993.t01-1-00006.x
  • [34]. Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern Baltic Sea: Quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78 (1), 38-44, http://dx.doi.org/10.1016/j.ecss.2007.11.017
  • [35]. Kuliński K., Pempkowiak J., 2011, The carbon budget of the Baltic Sea, Biogeosciences, 8, 3219-3230, http://dx.doi.org/10.5194/bg-8-3219-2011
  • [36]. Kuliński K., Schneider B., Hammer K., Machulik U., Schulz-Bull D., 2014, The influence of dissolved organic matter on the acid-base system of the Baltic Sea, J. Marine Syst., 132, 106-115, http://dx.doi.org/10.1016/j.jmarsys.2014.01.011
  • [37]. Leipe T., Tauber F., Vallius H., Virtasalo J., Uścinowicz Sz., Kowalski N., Hille S., Lindgren S., Myllyvirta T., 2011, Particulate organic carbon (POC) in surface sediments of the Baltic Sea, Geo-Mar. Lett., 31 (3), 175-188, http://dx.doi.org/10.1007/s00367-010-0223-x
  • [38]. Lorentz C. J., 1967, Determination of chlorophyll in pheo-pigments: spectropho- tomatric equations, Limnol. Oceanogr., 12 (2), 343-346, http://dx.doi.org/10.4319/lo.1967.12.2.0343
  • [39]. Maar M., Moller E. F., Larsen J., Madsen K. S., Wan Z., She J., Jonasson L., Neumann T., 2011, Ecosystem modelling across a salinity gradient from the North Sea to the Baltic Sea, Ecol. Model., 222 (10), 1696-1711, http://dx.doi.org/10.1016/j.ecolmodel.2011.03.006
  • [40]. Maric D., Frka S., Godrija J., Tomazic I., Penezic A., Djakovac T., Vo jvodic V., Precali R., Gasparovic B., 2013, Organic matter production during late summerwinter period in a temperate sea, Cont. Shelf Res., 55 (1), 52-65, http://dx.doi.org/10.1016/j.csr.2013.01.008
  • [41]. Meyer-Harms B., von Bodungen B., 1997, Taxon-specific ingestion rates of natural phytoplankton by calanoid copepods in an estuarine environment (Pomeranian Bight, Baltic Sea) determined by cell counts and HPLC analyses of marker pigments, Mar. Ecol.-Prog. Ser., 153, 181-190, http://dx.doi.org/10.3354/meps153181
  • [42]. Omstedt A., Axell L. B., 2003, Modeling the variations of salinity and temperature in the large Gulfs of the Baltic Sea, Cont. Shelf Res., 23 (3-4), 265-294, http://dx.doi.org/10.1016/S0278-4343(02)00207-8
  • [43]. Omstedt A., Humborg C., Pempkowiak J., Perttilä M., Rutgersson A., Schneider B., Smith B., 2012, Biogeochemical control of the coupled CO2-O2 system of the Baltic Sea: A review of the results of Baltic-C, AMBIO, 43, 49-53, http://dx.doi.org/10.1007/s13280-013-0485-4
  • [44]. Parsons T. R., 1969, Determination of photosynthetic pigments in sea-water. A survey of methods, UNESCO, Paris, 69 pp.
  • [45]. Pempkowiak J., 1983, C18 reversed-phase trace enrichment of short- and long-chain (C2-C8-C20) fatty acids from dilute aqueous solutions and sea water, J. Chromatography A, 258, 93-102, http://dx.doi.org/10.1016/S0021-9673(00)96401-X
  • [46]. Pempkowiak J., Chiffoleau J.-F., Staniszewski A., 2000, Vertical and horizontal distribution of selected heavy metals in the southern Baltic off Poland, Estuar. Coastal Shelf Sci., 51 (1), 115-125, http://dx.doi.org/10.1006/ecss.2000.0641
  • [47]. Pempkowiak J., Walkusz-Miotk J., Bełdowski J., Walkusz W., 2006, Heavy metals in zooplankton from the Southern Baltic, Chemosphere, 62 (10), 1697-1708, http://dx.doi.org/10.1016/j.chemosphere.2005.06.056
  • [48]. Pempkowiak J., Widrowski M., Kuliński W., 1984, Dissolved organic carbon and particulate carbon in the Southern Baltic in September, Proc. XIV Conf. Baltic Oceanogr., IMGW, Gdynia, 699-713.
  • [49]. Sarmiento J. L., Gruber N., 2006, Ocean biogeochemical dynamics, Princeton Univ. Press, New York, 526 pp.
  • [50]. Schneider B., Nausch G., Nagel K., Wasmund N., 2003, The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation, J. Marine Syst., 42 (1-2), 53-64.
  • [51]. Seager S. L., Slabaugh M. R., 2004, Chemistry for today: general, organic, and biochemistry, Thomson Brooks/Cole, Bedmont, 342 pp.
  • [52]. Segar D. A., 2012, Introduction to ocean science, 3rd edn., 1st electr. edn., ver. 3.0. 525 pp.
  • [53]. Stedmon C. A., Markager S., Tranvik L., Kronberg L., Slätis T., Martinsen W., 2007, Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea, Mar. Chem., 104 (3-4), 227-240, http://dx.doi.org/10.1016/j.marchem.2006.11.005
  • [54]. Stoń J., Kosakowska A., Łotocka M., Łysiak-Pastuszak E., 2002, Pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea, Oceanologia, 44 (4), 419-437.
  • [55]. Szymczycha B., Maciejewska A., Winogradow A., Pempkowiak J., 2014, Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea?, Oceanologia, 56 (2), 327-347, http://dx.doi.org/10.5697/oc.56-2.327
  • [56]. Thomas H., Schneider B., 1999, The seasonal cycle of carbon dioxide in Baltic Sea surface waters, J. Marine Syst., 22 (1), 53-67, http://dx.doi.org/10.1016/S0924-7963(99)00030-5
  • [57]. Thomas H., Pempkowiak J., Wullf F., Nagel K., 2003, Autotrophy, nitrogen accumulation and nitrogen limitation in the Baltic Sea: a paradox or a buffer for eutrophication?, Geophys. Res. Lett., 30 (21), 2130 p.
  • [58]. Thomas H., Bozec Y., de Baar H. J. W., Elkalay K., Frankignoulle M., Schiettecatte L.-S., Kattner G., Borges A. V., 2005, The carbon budget of the North Sea, Biogeosciences, 2, 87-96, http://dx.doi.org/10.5194/bg-2-87-2005
  • [59]. Uścinowicz Sz., 2011, Geochemistry of Baltic Sea surface sediments, Polish Geol. Inst. - Nat. Res. Inst., Warsaw, 356 pp.
  • [60]. Voipio A., 1981, The Baltic Sea, Elsevier, Amsterdam, 148 pp.
  • [61]. Wåhlström I., Omstedt A., Björk G., Anderson L.G., 2012, Modelling the CO2 dynamics in the Laptev Sea, Arctic Ocean: Part I, J. Mar. Syst., 102-104, 29-38, http://dx.doi.org/10.1016/j.jmarsys.2012.05.001
  • [62]. Wasmund N., Uhlig S., 2003, Phytoplankton trends in the Baltic Sea, J. Mar. Sci., 60, 177-186.
  • [63]. Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic), Mar. Ecol.-Prog. Ser., 148, 169-186, http://dx.doi.org/10.3354/meps148169
  • [64]. Wożniak S., 2014, Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications, Oceanologia, 56 (1), 7-39, http://dx.doi.org/10.5697/oc.56-1.007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ee0a99e-02eb-4e4a-9538-b78f17d6186d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.