PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect and mechanism analysis of hydroxylated nano‑boron nitride on workability and multi‑scale mechanical properties of cement paste

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nano-boron nitride (h-BN) has excellent physical and mechanical properties. Due to its stable chemical performance, the improvement effect on the properties of cement-based materials was limited. Therefore, the chemical modification method was used to prepare functional h-BN to improve its application potential in cement-based materials in this paper. The hydroxylated nano-boron nitride (h-BN-OH) was prepared by modified pristine h-BN with saturated sodium hydroxide (NaOH). The effects of h-BN-OH after ultrasonic dispersion for 10 min, 20 min, 30 min and 40 min on the setting time, fluidity, resistivity, mascroscopic strength and microscopic Young’s modulus of hydration products of ordinary Portland cement were investigated. Fourier transform infrared spectroscopy (FTIR) test results showed that h-BN-OH had obvious hydroxyl infrared characteristic peaks. After adding h-BN-OH into cement paste, the initial and final setting time of cement paste was shortened 6.44-15.34% and 5.05-13.00%, respectively; the fluidity was reduced 9.86-22.79%, and the resistivity was increased 7.14-25.96%. Meanwhile, the compressive strength of cement paste and the microscopic Young’s modulus of hydration products were significantly improved 10.82-40.85% and 9.90-31.01%, respectively. The main reasons were as follows: (1) The dispersion effect and stability of h-BN-OH in cement pore solution were better than that of pristine h-BN, and the hydroxyl group grafted on the h-BN-OH provided nucleation sites for the growth of calcium-silicate hydrate (C-S-H) gel. (2) The hydroxyl groups grafted on the h-BN-OH can absorb Ca2+, resulting the polymerization degree (nc) and medium chain length (MCL) of C-S-H gel increased. The formation of C-S-H gel network structure was accelerated by the increasing proportion of Q3. (3) The pore structure of cement hydration products was significantly optimized.
Rocznik
Strony
art. no. e122
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • College of Architecture and Civil Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People’s Republic of China
autor
  • College of Architecture and Civil Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People’s Republic of China
autor
  • College of Applied Sciences, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People’s Republic of China
autor
  • College of Architecture and Civil Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People’s Republic of China
autor
  • College of Architecture and Civil Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People’s Republic of China
Bibliografia
  • 1. Radivojevic V.M., Rupcic S., Milicevic I., Otkovic I.I. Electromagnetic wave attenuation by plane concrete in the frequency range of 4G and 5G systems. In: 4th IEEE International Conference on Smart Systems and Technologies (SST), Osijek, CROATIA, 2020, pp 31-38.
  • 2. Asp A., Hentila T., Valkama M., Pikkuvirta J., Hujanen A., Huhtinen I. IEEE, impact of concrete moisture on radio propagation: fundamentals and measurements of concrete samples. In: 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 2019, pp 542-547.
  • 3. Dhanumalayan E, Kaleemulla S. Investigation of structure, dielectric and thermal properties of hexagonal boron nitride dispersed polymer blends. J Mater Sci Mater Electron. 2019;30:17459-68.
  • 4. Hou Y, Yang W, Zhong C, Wu S, Wu Y, Liu F, Huang X, Wen G. Thermostable SiCO@BN sheets with enhanced electromagnetic wave absorption. Chem Eng J. 2019;378:122239.
  • 5. Najafishad S, Manesh HD, Zebarjad SM, Hataf N, Mazaheri Y. Production and investigation of mechanical properties and electrical resistivity of cement-matrix nanocomposites with graphene oxide and carbon nanotube reinforcements. Arch Civ Mech Eng. 2020;20:00059.
  • 6. Li Y, Li H, Jin C. Effect of multi-walled carbon nanotubes on the damping property of cement mortar and mechanism analysis. Arch Civ Mech Eng. 2021;21:00253.
  • 7. Itas YS, Ndikilar CE, Zangina T, Hafeez HY, Safana AA, Khandaker MU, Ahmad P, Abdullahi I, Olawumi BK, Babaji MA, Osman H, Alamri S. Synthesis of thermally stable h-BNCNT hetero-structures via microwave heating of ethylene under nickel, iron, and silver catalysts. Curr Comput-Aided Drug Des. 2021;11:1097.
  • 8. Zhao G, Zhang F, Wu Y, Hao X, Wang Z, Xu X. One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance. Adv Opt Mater. 2016;4:141-6.
  • 9. Wang W, Chen SJ, de Souza FB, Wu B, Duan WH. Exfoliation and dispersion of boron nitride nanosheets to enhance ordinary Portland cement paste. Nanoscale. 2018;10:1004-14.
  • 10. Rafiee MA, Narayanan TN, Hashim DP, Sakhavand N, Shahsavari R, Vajtai R, Ajayan PM. Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites. Adv Func Mater. 2013;23:5624-30.
  • 11. Guender D, Watanabe K, Taniguchi T, Witte G. Van der Waals bound organic/2D insulator hybrid structures: epitaxial growth of acene films on hBN(001) and the influence of surface defects. ACS Appl Mater Interfaces. 2020;12:38757-67.
  • 12. Lin Y, Connell JW. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale. 2012;4:6908-39.
  • 13. Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang Z-Y, Dresselhaus MS, Li L-J, Kong J. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010;10:4134-9.
  • 14. Lin Y, Williams TV, Cao W, Elsayed-Ali HE, Connell JW. Defect functionalization of hexagonal boron nitride nanosheets. J Phys Chem C. 2010;114:17434-9.
  • 15. Alem N, Erni R, Kisielowski C, Rossell MD, Gannett W, Zettl A. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev B. 2009;80:155425.
  • 16. Warner JH, Ruemmeli MH, Bachmatiuk A, Buechner B. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano. 2010;4:1299-304.
  • 17. Chen SJ, Wang W, Sagoe-Crentsil K, Collins F, Zhao XL, Majumder M, Duan WH. Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective. RSC Adv. 2016;6:5745-53.
  • 18. Mbugua R, Salim R, Ndambuki J. Effect of gum arabic karroo as a water-reducing admixture in concrete. Materials. 2016;9:80.
  • 19. Zhang W, Han B, Yu X, Ruan Y, Ou J. Nano boron nitride modified reactive powder concrete. Constr Build Mater. 2018;179:186-97.
  • 20. Lin Y, Williams TV, Xu T-B, Cao W, Elsayed-Ali HE, Connell JW. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J Phys Chem C. 2011;115:2679-85.
  • 21. Wang X, Dong S, Ashour A, Zhang W, Han B. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Constr Build Mater. 2020;240:117942.
  • 22. Wang J, Han B, Li Z, Yu X, Dong X. Effect investigation of nanofillers on C-S-H gel structure with Si NMR. J Mater Civ Eng. 2019;31:04018352.
  • 23. Kashif-Ur-Rehman S, Kumarova S, Ali-Memon S, Javed MF, Jameel M. A review of microscale, rheological, mechanical, thermoelectrical and piezoresistive properties of graphene based cement composite. Nanomaterials. 2020;10:2076.
  • 24. Qureshi TS, Panesar DK. Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets. Compos Part B Eng. 2020;197:108063.
  • 25. Wanasinghe D, Aslani F, Ma G. Effect of water to cement ratio, fly ash, and slag on the electromagnetic shielding effectiveness of mortar. Constr Build Mater. 2020;256:119409.
  • 26. Lin H, Liu H, Li Y, Kong XM. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures. Cem Concr Res. 2021;144:106425.
  • 27. Ryu S, Oh H, Kim J. Facile liquid-exfoliation process of boron nitride nanosheets for thermal conductive polyphthalamide composite. Polymers. 2019;11:1628.
  • 28. Li R, Lei L, Sui T, Plank J. Effectiveness of PCE superplasticizers in calcined clay blended cements. Cem Concr Res. 2021;141:106334.
  • 29. Chung DDL. Review: Improving cement-based materials by using silica fume. J Mater Sci. 2002;37:673-82.
  • 30. Trtik P, Kaufmann J, Volz U. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste. Cem Concr Res. 2012;42:215-21.
  • 31. Thomas JJ, Chen JJ, Jennings HM, Neumann DA. Ca-OH bonding in the C-S-H gel phase of tricalcium silicate and white portland cement pastes measured by inelastic neutron scattering. Chem Mater. 2003;15:3813-7.
  • 32. Chen J, Akono A-T. Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem Concr Res. 2020;137:106197.
  • 33. Li J, Zhang W, Garbev K, Monteiro PJM. Coordination environment of Si in calcium silicate hydrates, silicate minerals, and blast furnace slags: A XANES database. Cem Concr Res. 2021;143:106376.
  • 34. Hsiang H-I, Chen W-S, Huang W-C. Pre-reaction temperature effect on C-S-H colloidal properties and xonotlite formation via steam assisted crystallization. Mater Struct. 2016;49:905-15.
  • 35. Li Q, Ge Y, Geng G, Bae S, Monteiro PJM. CaCl2-accelerated hydration of tricalcium silicate: a STXM study combined with Si-29 MAS NMR. J Nanomater. 2015;2015:1-10.
  • 36. Li Y, Li H, Wang Z, Jin C. Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel. Cem Concr Res. 2020;128:105955.
  • 37. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong XD. Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc. 1999;82:742-8.
  • 38. Yu R, Spiesz P, Brouwers HJH. Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount. Constr Build Mater. 2014;65:140-50.
  • 39. Pan Z, He L, Qiu L, Korayem AH, Li G, Zhu JW, Collins F, Li D, Duan WH, Wang MC. Mechanical properties and microstructure of a graphene oxide-cement composite. Cem Concr Compos. 2015;58:140-7.
  • 40. Lu Z, Hou D, Meng L, Sun G, Lu C, Li Z. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Adv. 2015;5:100598-605.
  • 41. Li Y, Lin H. Experimental study on the effect of different dispersed degrees carbon nanotubes on the modification of magnesium phosphate cement. Constr Build Mater. 2019;200:240-7.
  • 42. Pourbeik P, Beaudoin JJ, Alizadeh R, Raki L. Correlation between dynamic mechanical thermo-analysis and composition-based models for C-S-H in hydrated portland cement paste. Mater Struct. 2015;48:2447-54.
  • 43. Li Y, Zhang G, Wang Z, Guan Z. Experimental-computational approach to investigate compressive strength of magnesium phosphate cement with nanoindentation and finite element analysis. Constr Build Mater. 2018;190:414-26.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7edecbc7-5d0f-45e4-8ce3-3dbcd7367b8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.