PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of transmission properties of a tapered optical fibre with gold nanoparticles liquid crystal composite cladding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a study of a hybrid structure based on the combination of a tapered optical fibre and gold nanoparticles dispersed in a liquid crystal material. Sensitivity to changes of the refractive index of the environment in which the structure is located, as well as the possibility of changing the refractive index of liquid crystals by external factors, such as temperature and electric field, were investigated. Electro- and thermally-induced changes of the refractive index of a liquid crystal through the rotation of a molecule director, which cause changes in the light propagated in a tapered optical fibre, were described. The most important issue in the article is to determine the influence of doping a liquid crystal with gold nanoparticles the concentration of which varies between 0.1 and 0.3 wt.%. The paper presents transmission measurements in a wide optical range depending on voltage, temperature, and frequency changes. Additionally, time courses of the obtained signal were measured. The study shows that the appropriate selection of nanoparticle concentration has a huge impact on the optical wave propagation. The experimental results show that the optical changes obtained for the investigated hybrid structure prefer it for use as an electrooptical switcher, filter, or sensor.
Rocznik
Strony
art. no. e143936
Opis fizyczny
Bibliogr. 49 poz., rys., fot., wykr.
Twórcy
  • Faculty of New Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Faculty of New Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Faculty of New Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Taha, B. A. et al. Comprehensive review tapered optical fiber configurations for sensing application: trend and challenges. Biosensors 11, 253 (2021). https://doi.org/10.3390/bios11080253
  • [2] Joe, H.-E., Yun, H., Jo, S.-H., Jun, M. B. G. & Min, B.-K. A review on optical fiber sensors for environmental monitoring. Int. J. Pr. Eng. Man.-Gr. 5, 173–191 (2018). https://doi.org/10.1007/s40684-018-0017-6
  • [3] Korposh, S., James, S. W., Lee, S.-W. & Tatan, R. P. Tapered optical fibre sensors: current trends and future perspectives. Sensors 19, 2294 (2019). https://doi.org/10.3390/s19102294
  • [4] Adhikari R., Chauhan, D., Mola, G. T. & Dwivedi, R. P. A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications. Opto-Electron. Rev. 29, 148-166 (2021). https://doi.org/10.24425/opelre.2021.139601
  • [5] Elosua, C. et al. Micro and nanostructured materials for the development of optical fibre. Sensors 17, 2312 (2017). https://doi.org/10.3390/s17102312
  • [6] Tong, L. Micro/nanofibre optical sensors: challenges and prospects. Sensors 18, 903 (2018). https://doi.org/10.3390/s18030903
  • [7] Moś, J., Stasiewicz, K., Matras-Postołek, K. & Jaroszewicz, L. R. Thermo-optical switching effect based on a tapered optical fiber and higher alkanes doped with ZnS:Mn. Materials 13, 5044 (2020). https://doi.org/10.3390/ma13215044
  • [8] Wang, P., Zhao, H., Wang, X., Farrell, G. & Brambilla, G. A Review of multimode interference in tapered optical fibers and related appli-cations. Sensors 18, 858 (2018). https://doi.org/10.3390/s18030858
  • [9] Komaneca, M. et al. Structurally-modified tapered optical fiber sensors for long-term detection of liquids. Opt. Fiber Technol. 47, 187-191 (2019). https://doi.org/10.1016/j.yofte.2018.11.010
  • [10] Ni, K., Chan, C. C., Dong, X. & Li, L. Temperature independent accelerometer using a fiber Bragg grating incorporating a biconical taper. Opt. Fiber Technol. 19, 410–413 (2013). https://doi.org/10.1016/j.yofte.2013.05.008
  • [11] Wieduwilt, T., Bruckner, S. & Bartelt, H. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform waist fiber tapers. Meas. Sci. Technol. 22, 075201 (2011). https://doi.org/10.1088/0957-0233/22/7/075201
  • [12] Xuan, H., Jin, W. & Zhang, M. CO2 laser induced long period gratings in optical microfibers. Opt. Express 17, 21882-21890 (2009). https://doi.org/10.1364/OE.17.021882
  • [13] Fan, P. et al. Higher-order diffraction of long-period microfiber gratings realized by arc discharge method. Opt. Express 24, 25380-25388 (2016). https://doi.org/10.1364/OE.24.025380
  • [14] Tian, Z., Yam, S. S.-H. & Loock, H. P. Refractive index sensor based on an abrut taper Michelson interferometer in single mode Fiber. Opt. Lett. 33, 1105-1107 (2008). https://doi.org/10.1364/OL.33.001105
  • [15] Bhardwaj, V., Kishor, K. & Sharma, A. C. Tapered optical fiber geometries and sensing applications based on Mach-Zehnder Interferometer: A review. Opt. Fiber Technol. 58, 1-12 (2020). https://doi.org/10.1016/j.yofte.2020.102302
  • [16] Pu, S., Luo, L., Tang, J., Mao, L. & Zeng, X. Ultrasensitive refractive-index sensors based on a tapered fiber coupler with Sagnac loop. IEEE Photon. Technol. Lett. 28, 1073-1076 (2016). https://doi.org/10.1109/LPT.2016.2529181
  • [17] Chen, Y., Yan, S.-C., Zheng, X., Xu, F. & Lu, Y.-G. A miniature reflective micro-force sensor based on a microfiber coupler. Opt. Express 3, 24443-2450 (2014). https://doi.org/10.1364/OE.22.002443
  • [18] Wu, Y., Zhang, T. H., Rao, Y. J. & Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 155, 258-263 (2011). https://doi.org/10.1016/j.snb.2010.12.030
  • [19] Li, X. & Ding, H. A stable evanescent field based microfiber knot resonator refractive index sensor. IEEE Photon. Technol. Lett. 26, 1625-1628 (2014). https://doi.org/10.1109/LPT.2014.2329321
  • [20] Lach C. N. H. C., Jamaludin, N., Rokhani, F. Z., Rashid, S. A. & Noor, A. S. M. Lard detection using a tapered optical fiber sensor integrated with gold-graphene quantum dots. Sens. Bio-Sens. Res. 26, 100306 (2019). https://doi.org/10.1016/j.sbsr.2019.100306
  • [21] Korec, J., Stasiewicz, K. A., Garbat, K. & Jaroszewicz, L. R. Enhancement of the SPR Effect in an optical fiber device utilizing a thin ag layer and a 3092A liquid crystal mixture. Molecules 26, 7553 (2021). https://doi.org/10.3390/molecules26247553
  • [22] Lin, H.-Y., Huang, Ch.-H., Cheng, G.-L., Chen, N.-K. & Chui, H.-Ch. Tapered optical fiber sensor based on localized surface plasmon resonance Opt. Express 20, 21693-21701 (2012). https://doi.org/10.1364/OE.20.021693
  • [23] Socorro, A. B., Del Villar, I., Corres, J. M., Arregui, F. J. & Matias I. R. Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sens. Actuators B Chem. 200, 53-60 (2014). https://doi.org/10.1016/j.snb.2014.04.017
  • [24] Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluorobutyl acrylate-coated tapered optical fibers. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
  • [25] Zhu, S. et al. High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology. Sensors 16, 1295 (2016). https://doi.org/10.3390/s16081295
  • [26] Wang, S., Feng, M., Wu, S., Wang, Q. & Zhang, L. Highly sensitive temperature sensor based on gain competition mechanism using graphene coated microfiber. IEEE Photon. J. 10, 6802008 (2018). https://doi.org/10.1109/JPHOT.2018.2827073
  • [27] Zubiate, P., Zamarreño, C. R., Del Villar, I., Matias, I. R. & Arregui, F. J. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt. Express 22, 28154-28162 (2014). https://doi.org/10.1364/OE.22.028154
  • [28] Korec, J., Stasiewicz, K. A., Strzeżysz, O., Kula, P. & Jaroszewicz, L. R. Electro-steering tapered fiber-optic device with liquid crystal cladding. J. Sensors 2019, 1-11 (2019). https://doi.org/10.1155/2019/1617685
  • [29] Moś, J. et al. Research on optical properties of tapered optical fibers with liquid crystal cladding doped with gold nanoparticles. Crystals 9, 306 (2019). https://doi.org/10.3390/cryst9060306
  • [30] Marć, P., Stasiewicz, K., Korec, K., Jaroszewicz, L. R & Kula, P. Polarization properties of nematic liquid crystal cell with tapered optical fiber Opto-Electron. Rev. 27, 321-328 (2019). https://doi.org/10.1016/j.opelre.2019.10.001
  • [31] Talataisong, W., Ismaeel, R. & Brambilla, G. A review of microfiber-based temperature sensors. Sensors 18, 461 (2018). https://doi.org/10.3390/s18020461
  • [32] Wu, X. & Tong, L. Optical microfibers and nanofibers. Nanophotonics 2, 407-428 (2018). https://doi.org/10.1515/nanoph-2013-0033
  • [33] Vishnoi, G., Goel, T. & Pillai, P. K. C. Spectrophotometric studies of chemical species using tapered core multimode optical fiber. Sens. Actuators B Chem. 45, 43-48 (1997). https://doi.org/10.1016/S0925-4005(97)00268-2
  • [34] Zhang, L., Lou, J. & Tong, L. Micro/nanofiber optical sensors. Photonic. Sens. 1, 31-42 (2011). https://doi.org/10.1007/s13320-010-0022-z
  • [35] Wiejata, P., Shankar, P. & Mutharasan, R. Fluorescent sensing using biconical tapers. Sens. Actuators B Chem. 96, 315-320 (2003). https://doi.org/10.1016/S0925-4005(03)00548-3
  • [36] Moayyed, H., Teixeira Leite, I., Coelho, L., Santos, J. & Viegas, D. Analysis of phase interrogated SPR fiber optic sensors with biometallic layers. IEEE Sens. J. 14, 3662-3668 (2014). https://doi.org/10.1109/JSEN.2014.2329918
  • [37] Zubiate, P., Zamarreño, C. R., Del Villar, I., Matias, I R. & Arregui, F. J. High sensitive refractometers based on lossy mode resonance supported by ITO coated D-shape optical fibers. Opt. Express 23, 8045-8050 (2015). https://doi.org/10.1364/OE.23.008045
  • [38] Budaszewki, D. et al. Nanoparticles-enhanced photonic liquid crystal fibers. J. Mol. Liq. 267, 271-278 (2018). https://doi.org/10.1016/j.molliq.2017.12.080
  • [39] Tian, Y., Wang, W., Wu, N., Zou, X. & Wang, X. Tapered optical fiber sensor for label-free detection of biomolecules. Sensors 11, 3780-3790 (2011). https://doi.org/10.3390/s110403780
  • [40] Brambilla, G. et al. Optical fiber nanowires and microwires: fabrication and applications. Adv. Opt. Photonics 1, 107-161 (2009). https://doi.org/10.1364/AOP.1.000107
  • [41] Prakash, J., Khan, S., Chauhan, S. & Biradar, A. M. Metal oxide-nanoparticles, and liquid crystal composites: A review of recent progress. J. Mol. Liq. 297, 112052 (2020). https://doi.org/10.1016/j.molliq.2019.112052
  • [42] Khatua, S. et al. Plasmonic nanoparticles−liquid crystal composites. J. Phys. Chem. C 114, 7251-7257 (2010). https://doi.org/10.1021/jp907923v
  • [43] Podoliak, N. et al. Elastic constants, viscosity and response time in nematic liquid crystals doped with ferroelectric nanoparticles. RSC Adv. 4, 46068-46074 (2014). https://doi.org/10.1039/C4RA06248E
  • [44] Choudhary, A., Singh, G. & Biradar, A. M. Advances in gold nanoparticle–liquid crystal composites. Nanoscale 6, 7743-7756 (2014). https://doi.org/10.1039/C4NR01325E
  • [45] Przybysz, N., Marć, P., Tomaszewska, E., Grobelny, J. & Jaroszewicz, L. R. Mixtures of selected n-alkanes and Au nanoparticels for optical fiber threshold temperature transducers. Opto-Electron. Rev. 28, 220-228 (2021). https://doi.org/10.24425/opelre.2020.136111
  • [46] Budaszewski, D. et al. Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles. Opt. Express 27, 14260-14269 (2018). https://doi.org/10.1364/OE.27.014260
  • [47] Qi, H. & Hegmann T. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles. ACS Appl. Mater. Interfaces 1, 1731-1738 (2009). https://doi.org/10.1021/am9002815
  • [48] Stamatoiu, O., Mirzaei, J., Feng, X. & Hegmann, T. Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles. in Liquid Crystals. Topics in Current Chemistry (ed. Tschierske, C.) 318, 331-393 (Springer, Verlag Berlin Heidelberg 2012). https://doi.org/10.1007/128_2011_233
  • [49] Dąbrowski, R. et al. Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application. Liq. Cryst. 44, 1911-1928 (2017). https://doi.org/10.1080/02678292.2017.1360952
Uwagi
This research was funded by the Ministry of Science and Higher Education as a statutory activity UGB-22-791 of the Technical Physics Applications Department of the Military University of Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7edd9afc-a970-43ba-b78c-c1aa18146122
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.