PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of optical Airy transform on non-diffracting propagation distance of finite energy Airy beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite energy Airy beams (FEAB) generated in laboratory have a short non-diffracting propagation distance (NDPD), which restricts its application in laser communication, laser detection and other fields. Effects of optical Airy transform (OAT) on NDPD of FEAB is analyzed. By comparing the theoretical formulas of the FEAB before and after the OAT, we find that when the transform parameter α of the OAT is larger than zero, the transverse scaling factor of the transformed FEAB is greater than that before the transformation, while the transformed exponential decay factor is smaller than that before the transformation. Using the Huygens–Fresnel diffractive integral, we derive the propagation formula of the transformed FEAB. Initial intensity distribution of FEAB before and after the OAT is compared. Propagation dynamics of the transformed FEAB with different α is numerically simulated and its NDPD is quantitatively evaluated. Results show that: with the increase of α, side lobes of the transformed FEAB increase, its main lobe and side lobes become wider than that before the transformation, and the inclination of the propagation trajectory decreases. When α is greater than half of the transverse scaling factor, the NDPD of the transformed FEAB increases rapidly.
Czasopismo
Rocznik
Strony
473--482
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Information and Navigation College, AFEU, Xi'an, 710077, China
  • Information and Navigation College, AFEU, Xi'an, 710077, China
autor
  • Information and Navigation College, AFEU, Xi'an, 710077, China
  • Information and Navigation College, AFEU, Xi'an, 710077, China
autor
  • Information and Navigation College, AFEU, Xi'an, 710077, China
Bibliografia
  • [1] CHAABAN A., MORVAN J.M., ALOUINI M.S., Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective, IEEE Transactions on communications 64(3), 2016, pp. 1176–1191, DOI: 10.1109/TCOMM.2016.2524569.
  • [2] SUN X.L., DJORDJEVEC I.B., Physical-layer security in orbital angular momentum multiplexing free-space optical communications, IEEE Photonics Journal 8(1), 2016, article 7901110, DOI: 10.1109/JPHOT.2016.2519279.
  • [3] BOSU R., PRINCE S., Mitigation of turbulence induced scintillation using concave mirror in reflection-assisted OOK free space optical links, Optics Communications 432, 2019, pp. 101–111, DOI: 10.1016/j.optcom.2018.09.061.
  • [4] MAHDIEH M.H., POURNOURY M., Atmospheric turbulence and numerical evaluation of bit error rate (BER) in free-space communication, Optics & Laser Technology 42(1), 2010, pp. 55–60, DOI: 10.1016/j.optlastec.2009.04.017.
  • [5] CHU X.C., ZHAO S.H., CHEN Z., LI Y.J., LI R.X., FANG Y.W., Research progress of Airy beam and feasibility analysis for its application in FSO system, Chinese Science Bulletin 61(17), 2016, pp. 1963–1974 (in Chinese), DOI: 10.1360/N972015-00265.
  • [6] ZHAN K.Y., ZHANG W.Q., JIAO R.Y., DOU L.C., LIU B., Propagations of Airy beams with quadratic phase modulation, and their interaction in para xial optical systems, Optics Communications 474, 2020, p. 126156, DOI: 10.1016/j.optcom.2020.126156.
  • [7] ZHU Y.F., GENG T., Generation of high-quality circular Airy beams in laser resonator, Acta Physica Sinica – Chinese Edition 69(1), 2020, article 014205 (in Chinese), DOI: 10.7498/aps.69.20191088.
  • [8] NAGAR H., DEKEL E., KASIMOV D., ROICHMAN Y., Non-diffracting beams for label-free imaging through turbid media, Optics Letters 43(2), 2018, pp. 190–193, DOI: 10.1364/OL.43.000190.
  • [9] SIVILOGLOU G.A., BROKY J., DOGARIU A., CHRISTODOULIDES D.N., Ballistic dynamics of Airy beams, Optics Letters 33(3), 2008, pp. 207–209, DOI: 10.1364/OL.33.000207.
  • [10] SIVILOGLOU G.A., BROKY J., DOGARIU A., CHRISTODOULIDES D.N., Observation of accelerating Airy beams, Physical Review Letters 99(21), 2007, article 213901, DOI: 10.1103/PhysRevLett.99.213901.
  • [11] SIVILOGLOU G.A., CHRISTODOULIDES D.N., Accelerating finite energy Airy beams, Optics Letters 32(8), 2007, pp. 979–981, DOI: 10.1364/OL.32.000979.
  • [12] CHU X.X., Evolution of an Airy beam in turbulence, Optics Letters 36(14), 2011, pp. 2701–2703, DOI: 10.1364/OL.36.002701.
  • [13] JI X.L., EYYUBOGLU H.T., JI G.M., JIA X.H., Propagation of an Airy beam through the atmosphere, Optics Express 21(2), 2013, pp. 2154–2164, DOI: 10.1364/OE.21.002154.
  • [14] CHEN C.Y., YANG H.M., KAVEHRAD M., ZHOU Z., Propagation of radial Airy array beams through atmospheric turbulence, Optics and Lasers in Engineering 52, 2014, pp. 106–114, DOI: 10.1016/j.optlaseng.2013.07.003.
  • [15] WEN W, CHU X.X., MA H.T., The propagation of a combining Airy beam in turbulence, Optics Communications 336, 2015, pp. 326–329, DOI: 10.1016/j.optcom.2014.10.006.
  • [16] XU Y.Q., ZHOU G.Q., The far-field divergent properties of an Airy beam, Optics & Laser Technology 44(5), 2012, pp. 1318–1323, DOI: 10.1016/j.optlastec.2011.12.037.
  • [17] TAO R.M., SI L., MA Y.X., ZHOU P., LIU Z.J., Average spreading of finite energy Airy beams in non-Kolmogorov turbulence, Optics and Lasers in Engineering 51(4), 2013, pp. 488–492, DOI: 10.1016/j.optlaseng.2012.10.014.
  • [18] GU Y., GBUR G., Scintillation of Airy beam arrays in atmospheric turbulence, Optics Letters 35(20), 2010, pp. 3456–3458, DOI: 10.1364/OL.35.003456.
  • [19] EYYUBOGLU H.T., Scintillation behavior of Airy beam, Optics & Laser Technology 47, 2013, pp. 232–236, DOI: 10.1016/j.optlastec.2012.08.029.
  • [20] LU Q., GAO S.J., SHNG L., WU J.B., QIAO Y.F., Generation of coherent and incoherent Airy beam arrays and experimental comparis ons of their scintillation characte ristics in atmospheric turbulence, Applied Optics 56(13), 2017, pp. 3750–3757, DOI: 10.1364/AO.56.003750.
  • [21] WEN W., CHU X.X., Beam wander of partially coherent Airy beams, Journal of Modern Optics 61(5), 2014, pp. 379–384, DOI: 10.1080/09500340.2014.887154.
  • [22] WEN W., CHU X.X., CAI Y.J., Dependence of the beam wander of an airy beam on its kurtosis parameter in a turbulent atmosphere, Optics & Laser Technology 68, 2015, pp. 6–10, DOI: 10.1016/j.optlastec.2014.10.020.
  • [23] WEN W., JIN Y., HU M.J., LIU X.L., CAI Y.J., ZOU C.J., LUO M., ZHOU L.W., CHU X.X., Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere, Optics Communications 415, 2018, pp. 48–55, DOI: 10.1016/j.optcom.2018.01.033.
  • [24] ROSE P., DIEBEL F., BOGUSLAWSKI M., DENZ C., Airy beam induced optical routing, Applied Physics Letters 102(10), 2013, article 101101, DOI: 10.1063/1.4793668.
  • [25] LIANG Y., HU Y., SONG D.H., LOU C.B., ZHANG X.Z., CHEN Z.G., XU J.J., Image signal transmission with Airy beams, Optics Letters 40(23), 2015, pp. 5686–5689, DOI: 10.1364/OL.40.005686.
  • [26] ZHU G.X., WEN Y.H., WU X., CHEN Y.J., LIU J., YU S.Y., Obstacle evasion in free-space optical communications utilizing Airy beams, Optics Letters 43(6), 2018, pp. 1203–1206, DOI: 10.1364/OL.43.001203.
  • [27] JIANG Y.F., HUANG K.K., LU X.H., The optical Airy transform and its application in generating and controlling the Airy beam, Optics Communications 285(24), 2012, pp. 4840–4843, DOI: 10.1016/j.optcom.2012.08.003.
  • [28] YAALOU M., HRICHA Z., BELAFHAL A., Propagation properties of finite cosh-Airy beams through an Airy transform optical system, Optical and Quantum Electronics 51, 2019, article 356, DOI: 10.1007/s11082-019-2075-6.
  • [29] YAALOU M., HRICHA Z., EL HALBA E.M., BELAFHAL A., Production of Airy-related beams by an Airy transform optical system, Optical and Quantum Electronics 51, 2019, article 308, DOI: 10.1007/s11082-019-2023-5.
  • [30] EZ-ZARIY L., BOUFALAH F., DALIL-ESSAKALI L., BELAFHAL A., Conversion of the hyperbolic-cosine Gaussian beam to a novel finite Airy-related beam using an optical Airy transform system, Optik 171, 2018, pp. 501–506, DOI: 10.1016/j.ijleo.2018.06.091.
  • [31] LIU H.L., LÜ Y.F., XIA J., PU X.Y., ZHANG L., Generation and propagation dynamics of Airy beam with the tunable tail, Journal of Modern Optics 63(9), 2016, pp. 887–895, DOI: 10.1080/09500340.2015.1108469.
  • [32] CHU X.C., ZHAO S.H., FANG Y.W., Maximum non-diffracting propagation distance of aperture-truncated Airy beams, Optics Communications 414, 2018, pp. 5–9, DOI: 10.1016/j.optcom.2018.01.001.
  • [33] MORRIES J. E., MAZILU M., BAUMGARTL J., CIZMAR T., DHOLAKIA K., Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength, Optics Express 17(15), 2009, pp. 13236–13245, DOI: 10.1364/OE.17.013236.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ed6bae3-f186-4020-a6af-b53a7be845ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.