PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study the effect of using carbon nanoparticles synthesized by second harmonic (Nd: Yag 532 nm) laser ablation on microbial fuel cell performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pulsed laser ablation in liquid (PLAL) is one of the main techniques for synthesizing nanoparticle materials. The carbon target was dissolved in ultrapure water (UPW) and exposed to a Q-switched Nd: YAG laser (1064 nm) with a 6 ns pulse duration to produce carbon nanoparticles. In this sequence, the Nd: YAG laser beam was focused on the carbon surface. In the investigation of nanoparticles prepared by laser irradiation, the effect of different incident laser pulse energies (500, 1000 mJ) on particle sizes (52.09, 26.49 nm) was observed by atomic force microscopy (AFM), pH test, and lightning energy conductivity (EC) test of nanosolution was used to characterize the nanoparticles. Particle size was generated using (1000 mJ) laser pulse energy. The performance of the H-shaped microbial fuel cell (MFC) was also tested, using nanocolloids in a salt bridge. This work shows that (Co) NPs synthesized with an energy of (1000 mJ) pulsed laser can act as salt bridge catalysts to improve MFC power output.
Czasopismo
Rocznik
Strony
38--43
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wz.
Twórcy
  • AL-Nahrain Renewable Energy Research Center, Al-Nahrain University, Baghdad, Iraq
  • Department of Radiology Techniques, Dijlah University College, Baghdad, Iraq
  • AL-Nahrain Renewable Energy Research Center, Al-Nahrain University, Baghdad, Iraq
  • College of Technical Engineering, Al-Farahidi University, Baghdad 00965, Iraq
  • Mechanical Engineering Department, College of Engineering, Gulf University, Sanad 26489, Bahrain
  • Applied Science Department, University of Technology, 10011 Baghdad, Iraq
  • College of Engineering, Al-Naji University, Baghdad, Iraq
  • Department of Energy Engineering, College of Engineering, University of Baghdad, Baghdad 10071, Iraq
  • College of Engineering, Gulf University, Sanad 26489
Bibliografia
  • 1. Khamees, H.T. & Algburi, S. (2023). Laser beam blink propagation: Evaluation BER in free space resembled dual SLG. Optics and Lasers in Engineering, 171, 107761. DOI: 10.1016/j.optlaseng.2023.107761.
  • 2. Khamees, H.T., Hussein, A.S. & Abdulkhaleq, N.I. (2023). An evaluation of scintillation index in atmospheric turbulent for new super Lorentz vortex Gaussian beam. TELKOMNIKA (Telecommun. Comp. Electr. Control), 21(1), 1–7. DOI: 10.12928/telkomnika.v21i1.22221.
  • 3. Khamees, H.T. (2022). Laser Gaussian beam analysis of structure constant depends on Kolmogorov in turbulent atmosphere for a variable angle of wave propagation. J. Laser Appl. 34(2). DOI: 10.2351/7.0000660.
  • 4. Abdullah, N.N. & Ibrahim, H.A. (2017). Experimental Study on Heat Transfer and Friction Factor Characteristics of Single Layer Graphene Based DI-water Nanofluid in a Circular Tube under Laminar Flow and Different Heat Fluxes as Boundary Conditions. J. Engin. 23(5), 106–122. DOI:10.31026/j.eng.2017.05.08.
  • 5. Majeed, A., Rasheed, R., Abdullah, T., Mohammed, M., Aljibori, H. & Abdullah, O. (2023). Preparation, Characterization, And Nanozyme Activity of Fe2O3 And Fe3O4 Nanoparticles as Acetylcholine Esterase. J. Balkan Tribolog. Assoc. 29(5), pp. 737–750.
  • 6. Nafil, R.Q., Majeed, M.S. & Hashim, E.T. (2019). Improvement electrolysis of water efficiency for hydrogen production using stainless steel nanoparticles synthesized by laser technique. J. Mech. Eng. Res. Dev, 42, 20–22. DOI: 10.26480/jmerd.04.2019.20.22.
  • 7. Al-Ali, D. & Kamoona, G.M.I. (2021). Effectiveness of nanomaterial in the roof of the building to achieve energy conservation for indoor environment of the building. J. Engin. 27(2), 126–148. DOI: 10.31026/j.eng.2021.02.09.
  • 8. Delma, M.T., Vijila, B. & Rajan, M.J. (2016). Green synthesis of copper and lead nanoparticles using ZingiberOfficinale stemextract. Internat. J. Sci. Res. Public. 6(11), 134–137.
  • 9. Devendra, K., A., Neelam, J. (2016). Green chemistry approach, synthesis, characterisation and thermal studies of nanocomposites of lead oxide nanoparticles. J. Chem. & Pharmac. Res. 8(10), 86–93.
  • 10. Majeed, M.S., Nafil, R.Q., Jabbar, M.F.A. & Suffer, K. (2021, March). Preparation of ZnO Nanoparticles by 1064/532nm Laser Ablation and Studying the Effect of the Ablation Wavelength. In Materials Science Forum (Vol. 1021, pp. 171–180). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/MSF.1021.171.
  • 11. Dutta, R.K., Nenavathu, B.P., Gangishetty, M.K. & Reddy, A.V.R. (2012). Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids and Surfaces B: Biointerfaces, 94, 143–150. DOI: 10.1016/j.colsurfb.2012.01.046.
  • 12. Majeed, M.S. & Nafil, R.Q. (2018). Laser improves biogas production by anaerobic digestion of cow dung. Baghdad Sci. J. 15(3), 0324–0324. DOI: 10.21123/bsj.2018.15.3.0324.
  • 13. Elango, G. & Roopan, S.M. (2015). Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim. Acta Part A: Molec. Biomolecular Spectrosc. 139, 367–373. DOI: 10.1016/j.saa.2014.12.066.
  • 14. Hu, T.L., Hwa, J.Z., Chang, W.F. & Wu, J.J. (2012). Antibacterial study using nano silver-doped high density polyethylene pipe. Sust. Environ. Res. 22(3), 153–158.
  • 15. Majeed, M.S. & Nafil, R.Q. (2018). Laser improves biogas production by anaerobic digestion of cow dung. Baghdad Sci. J. 15(3), 0324–0324. DOI: 10.21123/bsj.2018.15.3.0324.
  • 16. Lara, H.H., Ayala-Núnez, N.V., Ixtepan Turrent, L.D.C. & Rodríguez Padilla, C. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microb. Biotech. 26, 615–621. DOI: 10.1007/s11274-009-0211-3.
  • 17. Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M. E. & Kalinina, N.O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия), 6(1(20)), 35–44.
  • 18. Majeed, M.S., Hamad, T.K. & Hashim, E.T. (2018). ZnO nanoparticle synthesis using ND: YAG laser for increasing hydrogen fuel cell performance. Int. J. Mech. Prod. Eng. Res. Dev. 8, 497–506. DOI: 10.24247/ijmperddec201853.
  • 19. Nabıpour, Y.S. & Rostamzad, A. (2015). Comparing the antimicrobial effects of silver and copper nanoparticles against pathogenic and resistant bacteria of Klebsiella pneumonia, Pseudomonas aeruginosa and Staphylococcus aureus. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 2541–2546.
  • 20. Majeed, M.S., Mahmoud, S.M.M., Rasheed, R.M. & Rashad, A.A. (2024). Synthesis AgO Nanoparticles by Nd: Yag Laser with Different Pulse Energies. Baghdad Sci. 21(1), 0217–0217. DOI: 10.21123/bsj.2023.7539.
  • 21. Parameshwaran, R., Kalaiselvam, S. & Jayavel, R. (2013). Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure. Mat. Chem. Physics, 140(1), 135–147. DOI: 10.1016/j.matchemphys.2013.03.012.
  • 22. Parashar, U.K., Kumar, V., Bera, T., Saxena, P.S., Nath, G., Srivastava, S.K., Giri, R. & Srivastava, A. (2011). Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology, 22(41), 415104. DOI: 10.1088/0957-4484/22/41/415104.
  • 23. Nafil, R.Q. & Majeed, M.S. (2020). Frequency doubling by nonlinearity of TiO2 nanomaterial. Heliyon, 6(3). DOI: 10.1016/j.heliyon.2020.e03649.
  • 24. Selvam, S., Gandhi, R.R., Suresh, J., Gowri, S., Ravikumar, S. & Sundrarajan, M. (2012). Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Internat. J. Pharmac. 434(1-2), 366–374. DOI: 10.1016/j.ijpharm.2012.04.06.
  • 25. Shrivastava, S. & Jyung, W. (2010). Characterization of enhanced antibacterial effects of nano silver nano particles. J. Nanotech. 25, 103–25. DOI: 10.1088/0957-4484/18/22/225103.
  • 26. Khamees, H.T. & Majeed, M.S. (2024). A receiver intensity for Super Lorentz Gaussian beam (SLG) propagation via the moderate turbulent atmosphere using a novelty mathematical model. J. Optical Commun. 44(s1), 1857–1864. DOI: 10.1515/joc-2020-0062.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ed18ad3-9d59-4bfc-83c9-fa15a787ae86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.