PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kelvin-Helmholtz instabilities in the Colorado River Delta, Gulf of California

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the Colorado River Delta, the interaction of tidal currents and sea-bottom sediment formed, in geological times, large-scale seabed patterns known as sandbanks. These patterns are oriented along the delta, almost parallel to the dominant tidal flow, with the bathymetry having an undulating character across the delta. Calculations and analysis showed that the interaction of tidal currents with the bathymetry causes velocity shears, faster flowing over the ridges than in the troughs. Kelvin-Helmholtz instabilities emerge from the velocity shear, and a large amount of suspended sediment makes the instabilities visible in satellite images. The physical and dynamic conditions allowed us to find an explanation for the existence of these Kelvin-Helmholtz instabilities. Since sandbanks have been observed in different seas such as the North Sea, The Gulf of Korea, the Gulf of Khambhat in India, the Jiangsu coast in China, the Persian Gulf, and Moreton Bay in Australia, the results suggest the existence of instabilities in these areas. Satellite images, intense tidal currents, undulating topography, and suspended sediment made it possible to explain the generation and identification of Kelvin-Helmholtz instabilities.
Czasopismo
Rocznik
Strony
321--328
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • San Luis Potosí Institute of Scientific Research and Technology, Mexico
  • San Luis Potosí Institute of Scientific Research and Technology, Mexico
  • Centro Universitario de Investigaciones Bibliotecológicas (CUIB), University of Colima, Mexico
  • Institute of the Oceano Sciences and Limnology, The National Autonomous University of Mexico, Mexico
  • Institute of the Oceano Sciences and Limnology, The National Autonomous University of Mexico, Mexico
Bibliografia
  • [1] Álvarez, L. G., Jones, S. E., 2002. Factors influencing suspended sediment flux in the upper Gulf of California. Estuar. Coast. Shelf. Sci. 54, 747-759. https://doi.org/10.1006/ecss.2001.0873.
  • [2] Carbajal, N., 1993. Modelling of the circulation of the Gulf of California, Berichte aus dem Zentrum für Klima- und Meeresforschung. Reihe B, Nr. 3.
  • [3] Carbajal, N., Montaño, Y., 2001. Comparison between predicted and observed physical features of sandbanks. Estuar. Coast. Shelf Sci. 52, 435-443. https://doi.org/10.1006/ecss.2000.0760.
  • [4] Carbajal, N., Montaño-Ley, Y., Soto-Jiménez, M., Páez-Osuna, F., Tuxpan, J., 2020. Finger-like plumes of suspended sediment in the Colorado River Delta, Gulf of California. Estuar. Coast. Shelf Sci. 245, 106996. https://doi.org/10.1016/j.ecss.2020.106996.
  • [5] Carriquiry, J. D., Sánchez, A., 1999. Sedimentation in the Colorado River delta and the upper Gulf of California after nearly a century of discharge loss. Mar. Geol. 158, 125-145. https://doi.org/10.1016/S0025-3227(98)00189-3.
  • [6] De Silva, I. P. D., Fernando, H. J. S., Eaton, F., Hebert, D., 1996. Evolution of Kelvin-Helmholtz billows in nature and laboratory. Earth Planet. Sci. Lett. 143, 217-231. https://doi.org/10.1016/0012-821X(96)00129-X.
  • [7] Emmanuel, C. B., Bean, B. R., McAllister, L. G., Pollard, J. R., 1972. Observations of Helmholtz waves in the lower atmosphere with an acoustic sounder. J. Atmos. Sci. 29, 886-892. https://doi.org/10.1175/1520-0469(1972)029<0886:OOHWIT>2.0.CO;2.
  • [8] Ershkovich, A. I., 1980. Kelvin-Helmholtz instability in type-1 comet tails and associated phenomena. Space Sci. Rev. 25, 3-34. https://doi.org/10.1007/BF00200796.
  • [9] Fritts, D. C., 1979. The excitation of radiating waves and Kelvin-Helmholtz instabilities by the gravity wave-critical level interaction. J. Atmos. Sci. 36, 12-23. https://doi.org/10.1175/1520-0469(1979)036<0012:TEORWA>2.0.CO;2.
  • [10] Geyer, W. R., Lavery, A. C., Scully, M. E., Trowbridge, J. H., 2010. Mixing by shear instability at high Reynolds number. Geophys. Res. Lett. 37 (22). https://doi.org/10.1029/2010GL045272.
  • [11] Geyer, W. R., Smith, J. D., 1987. Shear instability in a high stratified Estuary. J. Phys. Ocean. 17, 1668-1679. https://doi.org/10.1175/1520-0485(1987)017<1668:SIIAHS>2.0.CO;2.
  • [12] Hazel, P., 1972. Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech. 51 (1), 39-61. https://doi.org/10.1017/S0022112072001065.
  • [13] Hua, L., Hidekatsu, Y., 2001. Observations of a Kelvin-Helmholtz billow in the ocean. J. Ocean. 57, 709-721. https://doi.org/10.1023/A:1021284409498.
  • [14] Hulscher, S. J. M. H., 1996. Formation and migration of large scale, rhythmic seabed patterns. Univ. Utrecht, Holland, 143 pp.
  • [15] Huthnance, J., 1982. On one mechanism forming linear sandbanks. Est. Coast. Shelf Sci. 14, 79-99. https://doi.org/10.1016/S0302-3524(82)80068-6.
  • [16] Kelley, M. C., Chen, C. Y., Beland, R. R., Woodman, R., Chau, J. L., Werne, J., 2005. Persistence of a Kelvin-Helmholtz instability complex in the upper troposphere. J. Geophys. Res. 110 (D14). https://doi.org/10.1029/2004JD005345.
  • [17] Landau, L. D., Lifshitz, E. M., 1987. Course of Theoretical Physics, 2 edn., Fluid Mech., Vol. 6, Pergamon Press.
  • [18] Markowski, P., Richardson, Y., 2010. Mesoscale meteorology in midlatitudes. Wiley-Blackwell, 407 pp.
  • [19] Masters, A., Achilleos, N., Bertucci, C., Dougherty, M. K., Kanani, S. J., Arridge, C. S., McAndrews, H. J., Coates, A. J., 2009. Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin-Helmholtz instability. Planet. Space Sci. 57 (14-15), 1769-1778 . https://doi.org/10.1016/j.pss.2009.02.010.
  • [20] Montaño, Y., Carbajal, N., 2008. Numerical experiments on the long-term morphodynamics of the Colorado River Delta. Ocean Dyn. 58, 19-29. https://doi.org/10.1007/s10236-007-0129-y.
  • [21] Off, T., 1963. Rhythmic linear sand bodies caused by tidal currents. Bull. Am. Ass. Petroleum Geol. 47, 324-341. https://doi.org/10.1306/BC743989-16BE-11D7-8645000102C1865D.
  • [22] Pattiaratchi, C., Collins, M., 1987. Mechanisms for linear sand bank formation and maintenance in relation to dynamical oceanographic observations. Prog. Oceanogr. 19, 117-156. https://doi.org/10.1016/0079-6611(87)90006-1.
  • [23] Thorpe, S. A., 1971. Experiments on the instability and turbulence in a stratified shear flow. J. Fluid Mech. 46, 299-319. https://doi.org/10.1017/S0022112073000911.
  • [24] Van Haren, H., Gostiaux, L., 2010. Gostiaux A deep-ocean Kelvin-Helmholtz billow train. Geophys. Res. Lett. 37 (3). https://doi.org/10.1029/2009GL041890.
  • [25] Zhu, Y., Chang, R., 2000. Preliminary study of the dynamic origin of the distribution pattern of bottom sediments on the continental shelves of the Bonhai Sea, Yellow Sea and East China Sea. Estuar. Coast. Shelf Sci. 51, 663-680. https://doi.org/10.1006/ecss.2000.0696.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eca1eaf-bcb8-44b7-99f0-ff6434fe9df1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.