PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An approach to optimize transportation problemswith neutrosophic numbers based on a newranking function

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A transportation problem (TP) is built on the framework of supply-demand and cost parameters which are uncertain in nature. Neutrosophic numbers are capable of handling incomplete information. This paper introduces a new solution approach to optimize TPs with neutrosophic parameters based on a new ranking function. This function utilizes the attitudinal character of a basic unit-interval monotonic function inspired from the domain of continuous ordered weighted average operators. Ranking rules are established followed by defining a neutrosophic transportation problem. A solution methodology followed by solved numerical illustrates the efficiency of the proposed method. Conclusion and future directions summarize the work.
Rocznik
Strony
625--640
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wzory
Twórcy
  • Department of ASH, Indira Gandhi Delhi Technical University for Women, Delhi, India
  • Department of Mathematics, Aryabhatta College, University of Delhi, Delhi, India
autor
  • Department of Mathematics, Keshav Mahavidyalaya, University of Delhi, Delhi, India
  • School of Economics and Business, Universidad de Talca, Talca, Chile
  • Department of ASH, Indira Gandhi Delhi Technical University for Women, Delhi, India
Bibliografia
  • [1] T. Anithakumari, B. Venkateswarlu and A. Akilbasha: Optimizing a fully rough interval integer solid transportation problems. Journal of Intelligent & Fuzzy Systems, 41(1), (2021), 2429-2439. DOI: 10.3233/JIFS-202373
  • [2] K.T. Atanassov: Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), (1986), 87-96. DOI: 10.1016/S0165-0114(86)80034-3
  • [3] I. Beg, M. Bisht and S. Rawat: An approach for solving fully generalized intuitionistic fuzzy transportation problems. Computational and Applied Mathematics, 42(8), (2023), 329. DOI: 10.1007/s40314-023-02467-8.
  • [4] R. Cerulli, C. D’Ambrosio and M. Gentili: Best and worst values of the optimal cost of the interval transportation problem. Optimization and Decision Science: Methodologies and Applications, Springer (2017), 367-374.
  • [5] S. Chanas, M. Delgado, J.L. Verdegay and M.A. Vila: Interval and fuzzy extensions of classical transportation problems. Transportation Planning and Technology, 17(2), (1993), 203-218. DOI: 10.1080/03081069308717511
  • [6] A. Charnes and W.W. Cooper: Management models and industrial applications of linear programming. Management Science, 4(1), (1957), 38-91. DOI: 10.1287/mnsc.4.1.38
  • [7] S. Das, A. Goswami and S. Alam: Multiobjective transportation problem with interval cost, source and destination parameters. European Journal of Operational Research, 117(1), (1999), 100-112. DOI: 10.1016/S0377-2217(98)00044-7
  • [8] D. Dubey and A. Mehra: A bipolar approach in fuzzy multi-objective linear programming. Fuzzy Sets and Systems, 246 (2014), 127-141. DOI: 10.1016/j.fss.2013.07.017
  • [9] H. Garg and R.M. Rizk-Allah: A novel approach for solving rough multiobjective transportation problem: development and prospects. Computational and Applied Mathematics, 40(4), (2021), 149. DOI: 10.1007/s40314-021-01507-5
  • [10] B.K. Giri and S.K. Roy: Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem. International Journal of Machine Learning and Cybernetics, 13(10), (2022), 3089-3112. DOI: 10.1007/s13042-022-01582-y
  • [11] F.L. Hitchcock: The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics, 20(1-4), (1941), 224-230. DOI: 10.1002/sapm1941201224
  • [12] L. Jin, Z.-S. Chen, R.R. Yager, T. Senapati, R. Mesiar, D.G. Zamora, B. Dutta and L. Martınez: Ordered weighted averaging operators for basic uncertain information granules. Information Sciences, 645 (2023), 119357. DOI: 10.1016/j.ins.2023.119357
  • [13] A. Kaur and A. Kumar: A new method for solving fuzzy transportation problems using ranking function. Applied Mathematical Modelling, 35(12), (2011), 5652-5661. DOI: 10.1016/j.apm.2011.05.012
  • [14] A. Kumar, P. Singh and Y. Kacher: Neutrosophic hyperbolic programming strategy for uncertain multi-objective transportation problem. Applied Soft Computing (2023), 110949.
  • [15] P.S. Kumar and R.J. Hussain: Computationally simple approach for solving fully intuitionistic fuzzy real life transportation problems. International Journal of System Assurance Engineering and Management, 7 (2016), 90-101. DOI: 10.1007/s13198-014-0334-2
  • [16] B. Li, J. Ding, Z. Yin, K. Li, X. Zhao and L. Zhang: Optimized neural network combined model based on the induced ordered weighted averaging operator for vegetable price forecasting. Expert Systems with Applications, 168 (2021), 114232. DOI: 10.1016/j.eswa.2020.114232
  • [17] D.-F. Li: Multiattribute decision making method based on generalized OWA operators with intuitionistic fuzzy sets. Expert Systems with Applications, 37(12), (2010), 8673-8678. DOI: 10.1016/j.eswa.2010.06.062
  • [18] J. Li and Y. Zhang: A new method for interval fuzzy preference relations in group decision making based on plant growth simulation algorithm and COWA. Journal of Intelligent & Fuzzy Systems, 37(3), (2019), 4311-4323. DOI: 10.3233/JIFS-190410
  • [19] S.-T. Liu and C. Kao: Solving fuzzy transportation problems based on extension principle. European Journal of Operational Research, 153(3), (2004), 661-674. DOI: 10.1016/S0377-2217(02)00731-2
  • [20] L. Lu and X. Luo: Emergency transportation problem based on single-valued neutrosophic set. Discrete Dynamics in Nature and Society, 2020, (2020), 1-8.
  • [21] A. Mahmoodirad, T. Allahviranloo and S. Niroomand: A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft Computing, 23(12), (2019), 4521-4530. DOI: 10.1007/s00500-018-3115-z
  • [22] S. Maldonado, C. Vairetti, K. Jara, M. Carrasco and J. Lopez: OWAdapt: An adaptive loss function for deep learning using OWA operators. arXiv preprint arXiv:2305.19443 (2023). DOI: 10.1016/j.knosys.2023.111022
  • [23] Z. Pawlak: Rough sets. International Journal of Computer & Information Sciences, 11 (1982), 341-356. DOI: 10.1007/BF01001956
  • [24] N. Qiuping, T. Yuanxiang, S. Broumi and V. Uluçay: A parametric neutrosophic model for the solid transportation problem. Management Decision, 61(2), (2023), 421-442. DOI: 10.1108/MD-05-2022-0660
  • [25] A. Revathi, S. Mohanaselvi and B. Said: An Efficient Neutrosophic Technique for Uncertain Multi Objective Transportation Problem. Neutrosophic Sets and Systems, 53(1), (2023), 27.
  • [26] M. Safi and A. Razmjoo: Solving fixed charge transportation problem with interval parameters. Applied Mathematical Modelling, 37(18-19), (2013), 8341-8347. DOI: 10.1016/j.apm.2013.03.053
  • [27] E. Shell: Distribution of a product by several properties, Directorate of Management Analysis. Proceedings of the Second Symposium in Linear Programming. Vol. 2 (1955), 615-642.
  • [28] Shivani, D. Rani and A. Ebrahimnejad: On solving fully rough multiobjective fractional transportation problem: development and prospects. Computational and Applied Mathematics, 42(6), (2023), 266. DOI: 10.1007/s40314-023-02400-z
  • [29] A. Singh, R. Arora and S. Arora: Bilevel transportation problem in neutrosophic environment. Computational and Applied Mathematics, 41(1), (2022), 1-25. DOI: 10.1007/s40314-021-01711-3
  • [30] S.K. Singh and S.P. Yadav: A new approach for solving intuitionistic fuzzy transportation problem of type-2. Annals of Operations Research, 243, (2016), 349-363. DOI: 10.1007/s10479-014-1724-1
  • [31] F. Smarandache: A unifying field in logics. neutrosophy: Neutrosophic probability, set and logic. American Research Press, Rehoboth, 1999.
  • [32] F. Smarandache: Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability. Infinite Study, 2013.
  • [33] F. Smarandache: Introduction to neutrosophic statistics. Infinite Study, 2014.
  • [34] F. Smarandache: (t, i, f)-Neutrosophic Structures and I-Neutrosophic Structures (Revisited) (2015).
  • [35] G. Su, B. Jia, P. Wang, R. Zhang and Z. Shen: Risk identification of coal spontaneous combustion based on COWA modified G1 combination weighting cloud model. Scientific Reports, 12(1), (2022), 2992. DOI: 10.1038/s41598-022-06972-4
  • [36] K. Swarup: Transportation technique in linear fractional functional programming. Journal of Royal Naval Scientific Service, 21 (5), (1966), 256-260.
  • [37] A. Thamaraiselvi and R. Santhi: A new approach for optimization of real life transportation problem in neutrosophic environment. Mathematical Problems in Engineering, 2016, (2016), 1-9. DOI: 10.1155/2016/5950747
  • [38] R. Verma and A. Mittal: Multiple attribute group decision-making based on novel probabilistic ordered weighted cosine similarity operators with Pythagorean fuzzy information. Granular Computing, 8(1), (2023), 111-129. DOI: 10.1007/s41066-022-00318-1
  • [39] R. Verma and J.M. Merigo: Variance measures with ordered weighted aggregation operators. International Journal of Intelligent Systems, 34(6), (2019), 1184-1205. DOI: 10.1002/int.22091
  • [40] Z. Xu: Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 15(6), (2007), 1179-1187. DOI: 10.1109/TFUZZ.2006.890678
  • [41] R.R. Yager: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), (1988), 183-190.
  • [42] R.R. Yager: Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems, 11 (1), (1996), 49-73.
  • [43] R.R. Yager: Generalized OWA aggregation operators. Fuzzy Optimization and Decision Making, 3 (2004), 93-107. DOI: 10.1023/B:FODM.0000013074.68765.97
  • [44] R.R. Yager: OWA aggregation over a continuous interval argument with applications to decision making. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(5), (2004), 1952-1963.
  • [45] R.R. Yager: Solving mathematical programming problems with OWA operators as objective functions. Proceedings of 1995 IEEE International Conference on Fuzzy Systems. Vol. 3. IEEE. (1995), 1441-1446. DOI: 10.1109/FUZZY.1995.409869
  • [46] Y. Yang, Z.-S. Chen, R.M. Rodrıguez, W. Pedrycz and K.-S. Chin: Novel fusion strategies for continuous interval-valued q-rung orthopair fuzzy information: a case study in quality assessment of SmartWatch appearance design. International Journal of Machine Learning and Cybernetics, 13 (2022), 1-24. DOI: 10.1007/s13042-020-01269-2
  • [47] J. Ye: Multiple-attribute group decision-making method under a neutrosophic numer environment. Journal of Intelligent Systems, 25 (3), (2016), 377-386. DOI: 10.1515/jisys-2014-0149
  • [48] L.A. Zadeh: Fuzzy sets. Information and Control, 8(3), (1965), 338-353. DOI: 10.1016/S0019-9958(65)90241-X
  • [49] L. Zhou, H. Chen and J. Liu: Continuous ordered weighted distance measure and its application to multiple attribute group decision making. Group Decision and Negotiation, 22 (2013), 739-758. DOI: 10.1007/s10726-012-9289-3
  • [50] Y. Zhou, C. Zheng, P. Wu and L. Zhou: A new compatibility model for fuzzy group decision making by using trapezoidal fuzzy preference relations with COWA operator. International Journal of Machine Learning and Cybernetics, 15(3), (2024), 1055-1073. DOI: 10.1007/s13042-023-01955-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ec83e59-2ea8-4ddb-83e4-fe699d3e786d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.