PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluid flow approximation of time-limited TCP/UDP/XCP streams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the use of fluid flow approximation to model interactions between a set of TCP, UDP and XCP flows in the environment of IP routers using AQM (Active Queue Management) algorithms to control traffic congestion. In contrast to other works, independent UDP and TCP streams are considered and the model allows to start and end data transmissions in TCP, UDP and XCP streams at any time moment. It incorporates several Active Queue Management mechanisms: RED, NLRED, CHOKe.
Rocznik
Strony
217--225
Opis fizyczny
Bibliogr. 56 poz., rys., wykr.
Twórcy
autor
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 5 Baltycka St., 44–100 Gliwice, Poland
autor
  • Institute of Informatics, Silesian Technical University, 16 Akademicka St., 44–100 Gliwice, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 5 Baltycka St., 44–100 Gliwice, Poland
autor
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 5 Baltycka St., 44–100 Gliwice, Poland
Bibliografia
  • [1] Internet Systems Consortium homepage, http://www.isc.org (2013).
  • [2] D.M. Nicol, M. Liljenstam, and J. Liu, “Advanced concepts in large-scale network simulation”, Winter Simulation Conf. 1, 153-166 (2005).
  • [3] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley, “Improving datacenter performance and robustness with multipath TCP”, ACM SIGCOMM Computer Communication Rev. 41 (4), 266-277 (2011).
  • [4] A. Domański, J. Domańska, and T. Czachorski, “The impact of self-similarity on traffic shaping in wireless LAN”, Lecture Notes in Computer Science 5174, 156-168 (2008).
  • [5] T. Czachorski, M. Nycz, and T. Nycz, “Modelling transient states in queueing models of computer networks: a few practical issues”, Communications in Computer and Communication Science 279, 58-72 (2014).
  • [6] A. Domański, J. Domańska, and T. Czachorski, “Comparison of AQM control systems with the use of fluid flow approximation”, Communications in Computer and Information Science 291, 82-90 (2012).
  • [7] Y. Zhang and M. Ahmed, “A control theoretic analysis of XCP”, IEEE Infocom 4, 2831-2835 (2005).
  • [8] Y. Sakumoto, H. Ohsaki, and M. Imase, “On XCP stability in heterogenous network”, IEEE Symp. on Computers and Communications 1, 531-537 (2007).
  • [9] Y. Gu, Y. Liu, and D. Towsley, “On integrating fluid model with packet simulation”, IEEE INFOCOM 4, 2856-2866 (2004).
  • [10] S. Kumar, S.-J. Park, and S. Sitharama Iyengar, “A loss-event driven scalable fluid simulation method for high-speed networks”, Computer Networks: Int. J. Computer and Telecommunications Networking 54 (1), 112-132 (2010).
  • [11] A. Gkogkas, R. Roverso, and S. Haridi, “Accurate and efficient simulation of bandwidth dynamics for peer-to-peer overlay networks”, VALUETOOLS ’11: 5th Int. ICST Conf. Performance Evaluation Methodologies and Tools 1, 352-361 (2011).
  • [12] P.A. Shah, S. Yasmin, S. Asghar, A. Qayyum, and H.B. Hasbullah, “A fluid flow model for SCTP traffic over the internet”, Int. Conf. on Emerging Technologies (ICET) 1, 1-6 (2012).
  • [13] T. Nishioka, Y. Sakumoto, H. Ohsaki, and M. Imase “Design and implementation of flow-level simulator for a network with heterogeneous flows”, Int. Symp. on Applications and the Internet 1, 78-84 (2009).
  • [14] M. Barbera, A. Lombardo, G. Schembra, and C.A. Trecarichi, “Fluid flow analysis of TCP flows in a DiffServ environment”, Eur. Trans. on Telecommunications 17 (5), 505-524 (2006).
  • [15] L. Wang, Z. Li, Y.-P. Chen, and K. Xue, “Fluid-based stability analysis of mixed TCP and UDP traffic under RED”, 10th IEEE Int. Conf. on Engineering of Complex Computer Systems 1, 341-348 (2005).
  • [16] A. Heider, “Improved congestion control for packet switched data networks and the internet”, PhD Thesis, Electrical and Electronic Engineering, University of Canterbury, Christchurch, 2004.
  • [17] A. Heider and A. Nakao, “On path switching in overlay network”, Proc. Australasian Telecom. Networks and Applications Conf. (ATNAC) 1, 355-360 (2008).
  • [18] P. Padhy and R. Sundaram, “Analysis and design of improved pi-pd controller for tcp aqm routers”, Proc. Int. Conf. on Power, Control and Embedded Systems (ICPCES) 1, 1-5 (2010).
  • [19] C. Liu and R. Jain, “Improving explicit congestion notification with the mark-front strategy”, Computer Networks 35 (2-3), 185-201 (2000).
  • [20] J. Domańska, A. Domański, and T. Czachorski, “The dropfrom- front strategy in AQM”, Lecture Notes in Computer Science 4712, 61-72 (2007).
  • [21] J. Domańska, D.R. Augustyn, and A. Domański, “The choice of optimal 3-rd order polynomial packet dropping function for NLRED in the presence of self-similar traffic”, Bull. Pol. Ac.: Tech. 60 (4), 779-786 (2012).
  • [22] J. Domańska and A. Domański, “Adaptive RED in AQM”, Communications in Computer and Information Science 39, 174-183 (2009).
  • [23] Y. Liu, F.L. Presti, V. Misra, D. Towsley, and Y. Gu, “Scalable fluid models and simulations for large-scale IP networks”, ACM Trans. on Modeling and Computer Simulation 14 (3), 305-324 (2004).
  • [24] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED”, ACM SIGCOMM 1, 151-160 (2000).
  • [25] Y. Chait, C. Hollot, V. Misra , D. Towsley, and H. Zhang, “Providing throughput differentiation for TCP flows using adaptive two color marking and multi-level AQM”, IEEE INFOCOM 1, 23-27 (2002).
  • [26] C. Kiddle, R. Simmonds, C. Williamson, and B. Unger, “Hybrid packet/fluid flow net- work simulation”, Parallel and Distributed Simulation 1, 143-152 (2003).
  • [27] http://www.nsnam.org (2014).
  • [28] Y. Sakumoto, R. Asai, H. Ohsaki, and M. Imase, “Design and implementation of flow-level simulator for performance evaluation of large scale networks.”, IEEE Int. Symp. on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems 1, 166-172 (2007).
  • [29] C.V. Hollot, V. Misra, and D. Towsley, “Analysis and design of controllers for AQM routers supporting TCP flows”, IEEE Trans. on Automatic Control 47 (6), 945-959 (2002).
  • [30] W. John and S. Tafvelin, “Analysis of internet backbone traffic and header anomalies observed”, ACM SIGCOMM Conf. on Internet Measurement 1, 111-116 (2007).
  • [31] J. Domańska, A. Domański, S. Nowak, and T. Czachorski, “A contribution to the fair scheduling for the TCP and UDP Streams”, Communications in Computer and Information Science 79, 207-216 (2010).
  • [32] W. John, S. Tafvelin, and T. Olovsson, “Passive internet measurement: overview and guidelines based on experiences”, Computer Communications 33 (5), 533-550 (2010).
  • [33] Pengxuan Mao, Yang Xiao, Shaohai Hu, and Kiseon Kim, “Stable parameter settings for PI router mixing TCP and UDP traffic”, IEEE 10th Int. Conf. on Signal Processing (ICSP) 1, 2547-2550 (2010).
  • [34] C.V. Hollot, V. Misra, and D. Towsley, “A control theoretic analysis of RED”, IEEE INFOCOM 3, 1510-1519 (2001).
  • [35] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-delay product network”, SIGCOMM 1, 89-102 (2002).
  • [36] J. Klamka, A. Czornik, and M. Niezabitowski, “Stability and controllability of switched systems”, Bull. Pol. Ac.: Tech. 61 (3), 547-555 (2013).
  • [37] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance”, IEEE ACM Trans. on Networking 1 (4), 397-413 (1993).
  • [38] H.-J. Ho and W.-M. Lin, “AURED - Autonomous Random Early Detection for TCP congestion control”, 3rd Int. Conf. on Systems and Networks Communications 1, 79-84 (2008).
  • [39] L. Enhai, L. Yan, and P. Ruimin, “An improved random early detection algorithm based on flow prediction”, Second Int. Conf. on Intelligent Networks and Intelligent Systems 1, 425-428 (2009).
  • [40] M.A. Qadeer, V. Sharma, A. Agarwal, and S.S. Husain, “Differentiated services with multiple random early detection algorithm using ns2 simulator”, 2nd IEEE Int. Conf. on Computer Science and Information Technology 1, 144-148 (2009).
  • [41] S. Bhatnagar and R. Patro, “A proof of convergence of the BRED and P-RED algorithms for random early detection”, IEEE Communications Letters 13 (10), 809-811 (2009).
  • [42] B. Zheng and M. Atiquzzaman “DSRED: an active queue management scheme for new generation network”, IEEE Conf. on Local Computer Networks 1, 242-251 (2000).
  • [43] S. Athuraliya, V.H. Li, S.H. Low, and Q. Yin, “REM: active queue management”, IEEE Network 15 (30), 48-53 (2001).
  • [44] K. Zhou, K.L. Yeung, and V. Li, “Nonlinear RED: a simple yet efficient active queue management scheme”, Computer Networks: Int. J. Computer and Telecommunications Networking 50, 3784-3794 (2006).
  • [45] H. Abdel-jaber, M. Mahafzah, F. Thabtah, and M. Woodward, “Fuzzy logic controller of Random Early Detection based on average queue length and packet loss rate”, Int. Symp. Performance Evaluation of Computer and Telecommunication Systems 1, 428-432 (2008).
  • [46] J. Domańska, A. Domański, and T. Czachorski, “Implementation of modified AQM mechanisms in IP routers”, J. Communications Software and Systems 4 (1), CD-ROM (2008).
  • [47] W. Chang Feng, D. Kandlur, and D. Saha, “Adaptive packet marking for maintaining end to end throughput in a differentiated service internet”, IEEE/ACM Trans. on Networking 7 (5), 685-697 (1999).
  • [48] M. May, C. Diot, B. Lyles, and J. Bolot, Influence of Active Queue Management Parameters on Aggregate Traffic Performance, Research Report, Institut de Recherche en Informatique et en Automatique, Yvelines, 2000.
  • [49] J. Domańska, A. Domański, and D.R. Augustyn, “The impact of the modified weighted moving average on the performance of the RED mechanism”, Communications in Computer and Information Science 160, 37-44 (2011).
  • [50] D.R. Augustyn, A. Domański, and J. Domańska, “Active queue management with non linear packet dropping function”, 6th Int. Conf. on Performance Modelling and Evaluation of Heterogeneous Networks 1, 137-146 (2010).
  • [51] D.R. Augustyn, A. Domański, and J. Domańska, “A choice of optimal packet dropping function for active queue management”, Communications in Computer and Information Science 79, 199-206 (2010).
  • [52] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe, a stateless AQM scheme for approximating fair bandwidth allocation”, IEEE INFOCOM 1, 942-952 (2000).
  • [53] T.K. Yung, J. Martin, M. Takai, and R. Bagrodia, “Integration of fluid-based analytical model with packet-level simulation for analysis of computer networks”, SPIE 1, 130-143 (2001).
  • [54] www.scipy.org (2014).
  • [55] J. Domańska, A. Domański, and T. Czachorski, “Fluid flow analysis of RED algorithm with modified weighted moving average”, Communications in Computer and Information Science 356, 50-58 (2013).
  • [56] A. Domański, J. Domańska, and T. Czachorski, “Comparison of CHOKe and gCHOKe active queues management algorithms with the use of fluid flow approximation”, Communications in Computer and Information Science 370, 363-371 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ebed008-4fa2-4aa0-8873-de37a4ff750e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.