PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Possibility of Using Winter Oilseed Rape (Brassica napus L. var. Napus) for Energy Purposes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwość wykorzystania rzepaku ozimego (Brassica napus L. var. Napus) do celów energetycznych
Języki publikacji
EN
Abstrakty
EN
Biomass is an important element in the energy balance in the world and plays a large role in efforts to reduce greenhouse gas emissions, and by this is a sustainable source of energy. One method of using biomass is through co-firing with hard coal and lignite in order to generate electricity. An important factor promoting the use of biomass in European Union countries is the fact that CO2 emissions from combustion are not included in the sum of emissions from fuel combustion, in accordance with the principles established in the emission trading system EU ETS. The aim of our research was to examine the possibility of using winter oilseed rape for energy purposes, grown in three research centres located in southern Poland. Two varieties of winter oilseed rape, Adam and Poznaniak, were used during laboratory tests. Analyses were carried out for siliques, seeds, and the main and lateral stem. As part of the study, the calorific value and heat of combustion were determined for 20 samples of winter oilseed rape. The highest values were obtained for seeds, while the lowest were obtained for stems. The calculated values of carbon dioxide emissions factor for the analysed samples were in most cases above 100 kg/GJ and were much higher than the emission during hard coal combustion. In addition, as part of the study, the biomass moisture, amount of ash generated in the combustion process, and the content of volatile compounds as well as carbon and sulphur were determined.
PL
Biomasa jest istotnym elementem w bilansie energetycznym na świecie i odgrywa dużą rolę w działaniach na rzecz redukcji emisji gazów cieplarnianych, stanowiąc zrównoważone źródło energii. Jednym ze sposobów użycia biomasy jest jej współspalanie z węglem kamiennym i brunatnym w celu wytwarzania energii elektrycznej. Ważnym czynnikiem promującym wykorzystanie biomasy w państwach Unii Europejskiej jest fakt, że emisja CO2 z jej spalania nie wlicza się do sumy emisji ze spalania paliw, zgodnie z zasadami ustalonymi w systemie handlu uprawnieniami EU ETS. Celem badań było zbadanie możliwości wykorzystania rzepaku ozimego do celów energetycznych, wychodowanego w trzech lokalizacjach Polski południowej. Do badań wykorzystane zostały dwa gatunki rzepaku ozimego Adam i Poznanianki, analizy wykonano dla łuszczyny, nasion, łodygi głównej i bocznej. W ramach przeprowadzonych badań określona została wartość opałowa oraz ciepło spalanie dla 20 próbek rzepaku ozimego. Najwyższe wartości zostały uzyskane dla ziaren rzepaku, natomiast najniższe dla łodyg. Obliczone wartości emisji dwutlenku węgla dla badanych próbek w większości przypadków wynosiły powyżej 100 mg/kJ i były dużo większe niż emisja podczas spalania węgla kamiennego i brunatnego. Dodatkowo w ramach badania oznaczono wilgotność biomasy, ilość powstałego w procesie spalania popiołu oraz oceniono zawartość części lotnych oraz węgla i siarki. Ponadto w ramach badania wykonano pomiary wilgotność biomasy, ilość wytworzonego popiołu w procesie spalania oraz określono zawartość związków lotnych oraz węgla i siarki.
Czasopismo
Rocznik
Strony
169--177
Opis fizyczny
Bibliogr. 42 poz., fig., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer, al. Mickiewicza 30, 30-059 Krakow, Poland
  • University of Agriculture, Unit of Crop Production, Institute of Plant Production, al. Mickiewicza 21, 31-120 Krakow, Poland
Bibliografia
  • 1. AGBOR E., ZHANG X., KUMAR A., 2014, A review of biomass co-firing in North America, in: Renewable & Sustainable Energy Reviews, 40, p. 930-943.
  • 2. AL-MANSOUR F., ZUWALA J., 2010, An evaluation of biomass co-firing in Europe, in: Biomass & Bioenergy, 34, p. 620-629.
  • 3. BAJWA D.S., PETERSON T., SHARM N., SHOJAEIARANI J., BAJWA S.G., 2018, A review of densified solid biomass for energy production, in: Renewable & Sustainable Energy Reviews, 96, p. 295-305.
  • 4. CAO Y., PAWŁOWSKI A., 2013, Biomass as an answer to sustainable energy. Opportunity versus challenge, in: Environment Protection Engineering, 39(1), p. 153-161.
  • 5. CENTRAL STATISTICAL OFFICE (GUS), 2017, Poland Environment, Warsaw.
  • 6. CHEN C., QIN S., CHEN F., LU Z., CHENG Z., 2019, Co-combustion characteristics study of bagasse, coal and their blends by thermogravimetric analysis, in: Journal of the Energy Institute, 92(2), p. 364-369.
  • 7. DEMIRBAS A., 2007, Effects of moisture and hydrogen content on the heating value of fuels, in: Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29, p. 649-655.
  • 8. DZIKUC M., PIWOWAR A., 2016, Ecological and economic aspects of electric energy production using the biomass co-firing method: the case of Poland, in: Renewable & Sustainable Energy Reviews, 55, p. 856-862.
  • 9. EMERHI E.A., 2011, Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders, in: Advances in Applied Science Research, 2, p. 236- 246.
  • 10. ENERGY REGULATORY OFFICE, 2018, Energy consumption in Poland 2005-2018, Warsaw.
  • 11. EA (ENVIRONEMNTAL AGENCY), 2016, Material comparators for end-of-waste decision,. Fuels: biomass, Report – SC130040/R7, Bristol.
  • 12. EROL M., HAYKIRI-ACMA H., KUCUKBAYRAK S., 2010, Calorific value estimation of biomass from their proximate analyses data, in: Renewable Energy, 35, p.170-173.
  • 13. EC (EUROPEAN COMMISSION), 2012, DIRECTORATE-GENERAL FOR RESEARCH AND INNOVATION, Innovating for sustainable growth: A bioeconomy for Europe, Brussels.
  • 14. EC (EUROPEAN COMMISSION), 2017, Biomass issues in the EU ETS, Guidance Document, Brussels.
  • 15. EEA (EUROPEAN ENVIRONMENTAL AGENCY), 2018, Air quality in Europe – 2018 report, Copenhagen.
  • 16. EU (EUROPEAN UNION), 2009, Directive 2009/ 28/EC of The European Parliament and of The Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, in: Off J. European Union, p. 16-62.
  • 17. EUROSTAT, AIR EMISSION, 2019a, Greenhouse gas emissions by source sector, http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_gge &lang=en (16.07.2019).
  • 18. EUROSTAT, AIR EMISSION 2019b, Air pollutants by source sector, http://appsso.eurostat.ec.europa.eu/ nui/submitViewTableAction.do (16.07.2019).
  • 19. EUROSTAT CROP PRODUCER, 2019, Crop production, http://appsso.eurostat.ec.europa.eu/nui/sub mitViewTableAction.do (30.05.2019).
  • 20. EUROSTAT ENERGY, 2019, Production of electricity and derived heat by type of fuel 2019, Crop production, http://appsso.eurostat.ec.europa.eu/nui/ submitViewTableAction.do (30.05.2019).
  • 21. EUROSTAT STATISTICS EXPLAINED, 2018, Main annual crop statistic, https://ec.europa.eu/euro stat/statistics-explained/index.php/Main_annual_cro p_ statistics, (4.12.2018).
  • 22. GILLENWATER M., 2005, Calculation Tool for Direct Emissions from Stationary Combustion version 3.0, in: Environmental Resources Trust, Washington DC.
  • 23. GOTO K., YOGO K., HIGASHII T., 2013, A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture, in: Applied Energy, 111, p. 710-720.
  • 24. GUSTAVSSON L., JOELSSON A., SATHRE R., 2010, Life cycle primary energy use and carbon emission of an eight-storey, in: Energy and Buildings, 42, p. 230-242.
  • 25. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, 2006, IPCC Guidelines for National Greenhouse Gas Inventories, ed. Eggleston S. et al., Inst. Global Environ. Strategies, Hayama.
  • 26. IEA (INTERNATIOANAL ENERGY AGENCY), 2017, CO2 emissions from fuel combustion – highlights (2017th ed.), IEA/OECD, Paris.
  • 27. JANDACKA J., MALCHO M., OCHODEK T., KOLONICNY J., HOLUBCIK M., 2015, The increase of silver grass ash melting temperature using additives, in: International Journal of Renewable Energy Research, 5, p. 258-265.
  • 28. LESTANDER T.A., JOHNSSON B., GROTHAGE M., 2009, NIR techniques create added values for the pellet and biofuel industry, in: Bioresource Technology, 100(4), p. 1589-1594.
  • 29. MAJ G., KRZACZEK P., KURANC A., PIEKARSKI W., 2017, Energy properties of sunflower seed husk as industrial extrusion residue, in: Research in Agricultural Engineering, 21, p. 77- 84.
  • 30. MCKENDRY P., 2002, Energy production from biomass (Part I): overview of biomass, in: Bioresource Technology, 83 p. 37-46.
  • 31. MITCHELL E.J.S., LEA-LANGTON A.R., JONES J.M., WILLIAMS A., LAYDEN P., JOHNSON R., 2016, The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove, in: Fuel Processing Technology, 142 p. 115-123.
  • 32. OZYUGURAN A., YAMAN S., 2017, Prediction of Calorific Value of Biomass from Proximate Analysis, in: Energy Procedia, 107, p. 130-136.
  • 33. PAWŁOWSKI L. PAWŁOWSKI A., 2016, Wpływ sposobów pozyskiwania energii na realizację paradygmatów zrównoważonego rozwoju, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, 18(2), p. 19-37.
  • 34. POLISH INSTITUTE OF ENVIRONMENT PROTECTION, 2016, Calorific value an CO2 emission Factor, Emissions Trading System (EU ETS), Warsaw.
  • 35. TUMULURU J.S., WRIGHT C.T., KENNY K.L., HESS J.R., 2010, A review on biomass densification technologies for energy application, Idaho Natl. Lab., Idaho.
  • 36. VASSILEV S., VASSILEVA C., VASSILEV V., 2015, Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview, in: Fuel, 158, p. 330-350.
  • 37. VICENTE E.D., ALVES C.A., 2018, An overview of particulate emissions from residential biomass combustion, in: Atmospheric Research, 199, p. 159- 185.
  • 38. WIELGOSIŃSKI G., ŁECHTAŃSKA P., NAMIECIŃSKA O., 2017, Emission of some pollutants from biomass combustion in comparison to hard coal combustion, in: Journal of the Energy Institute, 90, p. 787-796.
  • 39. UN: UNITED NATIONS’ DIVISION FOR SUSTAINABLE DEVELOPMENT GOALS, 2012, Transforming our world: the 2030 Agenda for Sustainable Development, New York.
  • 40. ZAJĄC T., KLIMEK-KOPYRA A., OLEKSY A., LORENC-KOZIK A., RATAJCZAK K., 2016, Analysis of yield and planttraits of oilseed rape (Brassica napus L.) cultivated in temperate region in light possibilities of sowing in arid areas, in: Acta Agrobotanica, 69, p. 1696-1709.
  • 41. ZAJĄC T., SYNOWIEC A., OLEKSY A., MACUDA J., KLIMEK-KOPYRA A., BOROWIEC F., 2017, Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height, in: International Agrophysics, 31, p. 273-285.
  • 42. ZHANG X., LUO L., SKITMORE M., 2015, Household carbon emission research: an analytical review of measurement, influencing factors and mitigation prospects, in: Journal of Cleaner Production, 103, p. 873-883.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eb81c6c-0acb-4e1a-9912-630ff710a1c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.