PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on thermoelectrical properties of selected imines in neat and multicomponent layers towards organic opto-electronics and photovoltaics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present review is mainly focused on the extended analysis of the results obtained from coupled measurement techniques of a thermal imaging camera and chronoamperometry for imines in undoped and doped states. This coupled technique allows to identify the current-voltage characteristics of thin films based on imine, as well as to assess layer defects in thermal images. Additional analysis of results provides further information regarding sample parameters, such as resistance, conductivity, thermal resistance, and Joule power heat correlated with increasing temperature. As can be concluded from this review, it is possible not only to study material properties at the supramolecular level, but also to tune macroscopic properties of -conjugated systems. A detailed study of the structure-thermoelectrical properties in a series of eight unsymmetrical and symmetrical imines for the field of optoelectronics and photovoltaics has been undertaken. Apart from this molecular engineering, the imines properties were also tuned by supramolecular engineering via protonation with camphorsulfonic acid and by creation of bulk-heterojunction compositions based on poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl) and/or [6,6]-phenyl-C71-butyric acid methyl ester, poly(3,4-ethylenedioxythiophene) towards the analysed donor or acceptor ability of imines in the active layer. The use of coupled measurement techniques of a thermal imaging camera and chronoamperometry allows obtaining comprehensive data on thermoelectric properties and defects indicating possible molecule rearrangement within the layer.
Twórcy
  • Military Institute of Engineer Technology, 136 Obornicka St., 50-961 Wroclaw, Poland
  • Military Institute of Engineer Technology, 136 Obornicka St., 50-961 Wroclaw, Poland
Bibliografia
  • [1] Wang, D. et al. Recent advances in molecular design of organic thermoelectric materials. CCS Chem. 3, 2212–2225 (2021). https://doi.org/10.31635/ccschem.021.202101076
  • [2] Dong, J. et al. Organic semiconductor nanostructures: Optoelectronic properties, Modification strategy, and photocatalytic applications. J Mater. Sci. Tech. (2021). https://doi.org/10.1016/j.jmst.2021.09.002
  • [3] Huang, D. et al. Conjugated-backbone effect of organic small molecules for n type thermoelectric materials with ZT over 0.2. J. Am. Chem. Soc. 139, 13013–13023 (2017). https://doi.org/10.1021/jacs.7b05344
  • [4] Mao, L. et al. Patching defects in the active layer of large-area organic solar cells. J. Mater. Chem. A 6, 5817–5824 (2018). https://doi.org/10.1039/C7TA11264E
  • [5] Lindner, S. M. et al. Charge separation at self-assembled nano-structured bulk interface in block copolymers. Angew. Chem 45, 3364–3368 (2006). https://doi.org/10.1002/anie.200503958
  • [6] Han, Y. et al. Calibration and image processing of aerial thermal image for UAV application in crop water stress estimation. J. Sensors 2021, Article ID 5537795 (2021). https://doi.org/10.1155/2021/5537795
  • [7] Stumper, M., Kraus, J. & Capousek, L. Thermal imaging in aviation. Magazine of Aviation Development 3, 16 (2015). https://doi.org/10.14311/MAD.2015.16.03
  • [8] Thermal Imaging in the Automotive Industry. Thermascan Ltd https://www.thermascan.co.uk/blog/thermal-imaging-automotive (2021).
  • [9] Thermography in Chemical Industry. InfraTec GmbH https://www.infratec.eu/thermography/industries-applications/chemical-industry/ (2021).
  • [10] Kasikowski, R. & Więcek, B. Fringing-effect losses in inductors by thermal modeling and thermographic measurements. IEEE Trans. Power Electron. 36, 9772–9786 (2021). https://doi.org/10.1109/TPEL.2021.3058961
  • [11] Kucharska, M. & Jaskowska-Lemanska, J. Active thermography in diagnostics of timber elements covered with polychrome. Materials 14, 1134 (2021). https://doi.org/10.3390/ma14051134
  • [12] Kowalski, M. Ł., Grudzień, A. & Ciurapiński, W. Detection of human faces in thermal infrared images. Metrol. Meas. Syst. 28, 307–321 (2021). https://doi.org/10.24425/mms.2021.136609
  • [13] Teubner, J. et al. Comparison of drone-based ir-imaging with module resolved monitoring power data. Energy Procedia 124, 560–566 (2017). https://doi.org/10.1016/j.egypro.2017.09.094
  • [14] Irshad, Jaffery, Z. A. & Haque, A. Temperature measurement of solar module in outdoor operating conditions using thermal imaging. Infrared Phys. Technol. 92, 134–138 (2018). https://doi.org/10.1016/j.infrared.2018.05.017
  • [15] Gallardo-Saavedra, S. et al. Infrared thermography for the detection and characterization of photovoltaic defects: comparison between illumination and dark conditions. Sensors 20, 4395 (2020). https://doi.org/10.3390/s20164395
  • [16] Muttillo, M. et al. On field infrared thermography sensing for pv system efficiency assessment: results and comparison with electrical models. Sensors 20, 1055 (2020). https://doi.org/10.3390/s20041055
  • [17] Iwan, A. et al. Optical and electrical properties of graphene oxide and reduced graphene oxide films deposited onto glass and Ecoflex® substrates towards organic solar cells. Adv. Mater. Lett 9, 58–65 (2018). https://doi.org/10.5185/amlett.2018.1870
  • [18] Fryń, P. et al. Hybrid materials based on l,d-poly(lactic acid) and single-walled carbon nanotubes as flexible substrate for organic devices. Polymers 10, 1271 (2018). https://doi.org/10.3390/polym10111271
  • [19] Fryń, P. et al. Dielectric, thermal and mechanical properties of L,D-Poly(Lactic Acid) modified by 4′-Pentyl-4-Biphenylcarbonitrile and single walled carbon nanotube. Polymers 11, 1867 (2019). https://doi.org/10.3390/polym11111867
  • [20] Fryń, P. et al. Research of binary and ternary composites based on selected aliphatic or aliphatic–aromatic polymers, 5CB or SWCN toward biodegradable electrodes. Materials 13, 2480 (2020). https://doi.org/10.3390/ma13112480
  • [21] Różycka, A. et al. Influence of TiO2 nanoparticles on liquid crystalline, structural and electrochemical properties of (8Z)-N-(4-((Z)-(4-pentylphenylimino)methyl)benzylidene)-4-pentylbenzenamine. Materials 12, 1097 (2019). https://doi.org/10.3390/ma12071097
  • [22] Gonciarz, A. et al. UV-Vis absorption properties of new aromatic imines and their compositions with poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}. Materials 12, 4191 (2019). https://doi.org/10.3390/ma12244191
  • [23] Bogdanowicz, K. A. Selected electrochemical properties of 4,4'-((1E,1'E)-((1,2,4-thiadiazole-3,5-diyl)bis(azaneylylidene))bis-(methaneylylidene))bis(N,N-di-p-tolylaniline) towards perovskite solar cells with 14.4% efficiency. Materials 13, 2440 (2020). https://doi.org/10.3390/ma13112440
  • [24] Przybył, W. et al. IR thermographic camera as useful and smart tool to analyse defects in organic solar cells. Photonics Lett. Poland 12, 25–27 (2020). https://doi.org/10.4302/plp.v12i2.976
  • [25] Jewloszewicz, B. et al. A comprehensive optical and electrical study of unsymmetrical imine with four thiophene rings and their binary and ternary compositions with PTB7 and PC70BM towards organic photovoltaics. RSC Adv 10, 44958 (2020). https://doi.org/10.1039/D0RA08330E
  • [26] Bogdanowicz, K. A. et al. Electrochemical and optical studies of new symmetrical and unsymmetrical imines with thiazole and thiophene moieties. Electrochim Acta 332, 135476 (2020). https://doi.org/10.1016/j.electacta.2019.135476
  • [27] Dylong, A. et al. Crystal structure determination of 4‐[(Di‐p‐tolylamino)‐benzylidene]‐(5‐pyridin‐4‐yl‐[1,3,4]thiadiazol‐2‐yl)‐imine along with selected properties of imine in neutral and protonated form with camforosulphonic acid: Theoretical and experimental studies. Materials 14, 1952 (2021). https://doi.org/10.3390/ma14081952
  • [28] Wang, J. et al. Stimulus responsive fluorescent hyperbranched polymers and their applications. Sci. China Chem. 53, 2409–2428 (2010). https://doi.org/10.1007/s11426-010-4106-9
  • [29] Albota, A. et al. Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653 (1998). https://doi.org/10.1126/science.281.5383.1653
  • [30] Reinhardt, B. A. et al. Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem. Mater. 10, 1863 (1998). https://doi.org/10.1021/cm980036e
  • [31] Iwase, Y. et al. Synthesis and photophysical properties of new two-photon absorption chromophores containing a diacetylene moiety as the central π-bridge. J. Mater. Chem. 13, 1575 (2000). https://doi.org/10.1039/b211268j
  • [32] Kim, O. K. et al. New class of two-photon-absorbing chromophores based on dithienothiophene. Chem. Mater. 12, 284 (2000). https://doi.org/10.1021/cm990662r
  • [33] Liu, Z. Q. et al. Trivalent boron as an acceptor in donor–π–acceptor-type compounds for single- and two-photon excited fluorescence. Chem. Eur. J. 9, 5074 (2003). https://doi.org/10.1002/chem.200304833
  • [34] Abbotto, A. et al. Novel heterocycle-based two-photon absorbing dyes. Org. Lett. 4, 1495 (2002). https://doi.org/10.1021/ol025703v
  • [35] Sek, D. et al. Hole transport triphenylamine-azomethine conjugated system: Synthesis and optical, photoluminescence and electrochemical properties. Macromolecules 41, 6653–6663 (2008). https://doi.org/10.1021/ma702637k
  • [36] Sek, D. et al. Characterization and optical properties of oligoazomethines with triphenylamine moieties exhibiting blue, blue-green and green light. Spectrochim Acta A Mol. Biomol. Spectrosc. 72, 1–10 (2009). https://doi.org/10.1016/j.saa.2008.06.022
  • [37] Gawlinska, K. et al. Searching of new, cheap, air- and thermally stable hole transporting materials for perovskite solar cells. Opto-Electron. Rev. 25, 274–284, (2017). https://doi.org/10.1016/j.opelre.2017.07.004
  • [38] Costa, P. M. J. F. et al. Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect. Nat. Commun. 2, 421 (2011). https://doi.org/10.1038/ncomms1429
  • [39] McLaren, C. T. et al. Development of highly inhomogeneous temperature profile within electrically heated alkali silicate glasses. Sci. Rep. 9, 2805 (2019). https://doi.org/10.1038/s41598-019-39431-8
  • [40] Balakrishnan, V. et al. A generalized analytical model for Joule heating of segmented wires. J. Heat Transfer 140, (7), 072001 (2018). https://doi.org/10.1115/1.4038829
  • [41] Thangaraju, S. K. & Munisamy, K. M. Electrical and Joule Heating Relationship Investigation Using Finite Element Method. in 7th International Conference on Cooling & Heating Technologies. 88, 012036 (Selangor, Malaysia, 2015). https://doi.org/10.1088/1757-899X/88/1/012036
  • [42] Russ, B. et al. Organic thermoelectric materials for Energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eb6b287-9c99-41ab-925a-9ba7c6edfde3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.