PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of ice cover impact on hydrodynamic processes in the Curonian Lagoon through numerical modeling

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we present an analysis of the hydrodynamic processes under ice cover in the largest lagoon in Europe – the Curonian Lagoon. By applying a finite element numerical modelling system (SHYFEM) and remote sensing ice cover data, the residual circulation, water fluxes through specific areas of the lagoon, saltwater intrusions, and water residence time (WRT) were investigated. The results, taken over an 11 year period, show that ice cover affects the circulation patterns in the lagoon by forming and shifting different gyre systems. Different circulation patterns are observed throughout all the meteorological seasons of the year. Since ice decreases circulation, water fluxes also decrease, especially in a cross-section in the middle of the lagoon, where the ice-cover suppressed wind-stress has a higher impact on the water movement rather than it has in the north. The presence of ice cover also decreases the salinity of the water in the northern part of the lagoon. In general, the salinity in the water column averaged over different periods is vertically uniform, however, a slight increase of salt concentration can be observed at the bottom layers in the Klaipėda Strait, where the difference of >1 PSU between bottom and top layers shows up on average 130 hours per year. The ice cover also decreases the saltwater intrusions into the lagoon by nearly 14 days per year. The increase of WRT is most prominent after long ice cover periods, away from the river inlets, especially in the southern part of the lagoon, where without the help of the wind action, water takes a longer time to renew than in the northern part.
Czasopismo
Rocznik
Strony
428--442
Opis fizyczny
Bibliogr. 42 poz., mapa, rys., tab., wykr.
Twórcy
  • Marine Research Institute, Klaipėda University, Universiteto ave. 17, 92294, Klaipėda, Lithuania
  • Marine Research Institute, Klaipėda University, Universiteto ave. 17, 92294, Klaipėda, Lithuania
  • Marine Research Institute, Klaipėda University, Universiteto ave. 17, 92294, Klaipėda, Lithuania
  • Marine Research Institute, Klaipėda University, Universiteto ave. 17, 92294, Klaipėda, Lithuania
  • CNR — National Research Council of Italy, ISMAR — Institute of Marine Sciences, Venice, Italy
Bibliografia
  • [1] Ambrosetti, W., Barbanti, L., Sala, N., 2003. Residence time and physical processes in lakes. J. Limnol. 62, 1-15.
  • [2] Baušys, J., 1978. Ledo Režimas. In: Rainys, A. (Ed.), Kuršių Marios II. Mokslas, Vilnius, Lithuania, 34-49.
  • [3] Bellafiore, D., Umgiesser, G., 2010. Hydrodynamic coastal processes in the North Adriatic investigated with a 3D finite element model. Ocean Dyn. 60, 255-273, https://doi.org/10.1007/s10236-009-0254-x.
  • [4] Bengtsson, L., 2012. Ice Covered Lakes. In: Bengtsson, L., Herschy, R. W., Fairbridge, R. W. (Eds.), Encyclopedia of Lakes and Reservoirs. Springer, Netherlands, Dordrecht, 357-360.
  • [5] Bengtsson, L., 1996. Mixing in ice-covered lakes. Hydrobiologia 322, 91-97, https://doi.org/10.1007/BF00031811.
  • [6] Cañedo-Argüelles, M., Kefford, B., Schäfer, R., 2019. Salt in freshwaters: Causes, effects and prospects - Introduction to the theme issue. Philos. Trans. R. Soc. B Biol. Sci. 374, art. no. 20180002, 6 pp., https://doi.org/10.1098/rstb.2018.0002.
  • [7] Carrasco, A. R., Ferreira, O., Roelvink, D., 2016. Coastal lagoons and rising sea level: A review. Earth-Science Rev. 154, 356-368, https://doi.org/10.1016/j.earscirev.2015.11.007.
  • [8] Cushman-Roisin, B., 2019. Environmental Fluid Mechanics. John Wiley & Sons Ltd, New York, 406 pp.
  • [9] Dailidiene, I., 2007. Hidroklimatinių sąlygų kaitos ypatumai Baltijos jūros Lietuvos priekrantėje ir Kuršių mariose. Klaipėda University.
  • [10] Dailidiene, I., Davuliene, L., 2008. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984-2005. J. Marine Syst. 74, 20-29, https://doi.org/10.1016/j.jmarsys.2008.01.014.
  • [11] De Pascalis, F., Pérez-Ruzafa, A., Gilabert, J., Marcos, C., Umgiesser, G., 2011. Climate change response of the Mar Menor coastal lagoon (Spain) using a hydrodynamic finite element model. Estuar. Coast. Shelf Sci. 114, 118-129, https://doi.org/10.1016/j.ecss.2011.12.002.
  • [12] Ertürk, A., Razinkovas, A., Zemlys, P., Pilkaitytė, R., Gasiunaitė, Z., 2015. Linking NPZD and Foodweb Models of an Estuarine Lagoon Ecosystem. Comput. Sci. Tech. 3, 350-412, https://doi.org/10.15181/csat.v3i1.1093.
  • [13] Ferrarin, C., Cucco, A., Umgiesser, G., Bellafiore, D., Amos, C. L., 2010a. Modelling fluxes of water and sediment between Venice Lagoon and the sea. Cont. Shelf Res. 30, 904-914, https://doi.org/10.1016/j.csr.2009.08.014.
  • [14] Ferrarin, C., Maicu, F., Umgiesser, G., 2017. The effect of lagoons on Adriatic Sea tidal dynamics. Ocean Model. 119, 57-71, https://doi.org/10.1016/j.ocemod.2017.09.009.
  • [15] Ferrarin, C., Razinkovas, A., Gulbinskas, S., Umgiesser, G., Bliudžiute, L., 2008. Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia 611, 133-146, https://doi.org/10.1007/s10750-008-9454-5.
  • [16] Ferrarin, C., Umgiesser, G., Bajo, M., Bellafiore, D., De Pascalis, F., Ghezzo, M., Mattassi, G., Scroccaro, I., 2010b. Hydraulic zonation of the lagoons of Marano and Grado, Italy. A modelling approach. Estuar. Coast. Shelf Sci. 87, 561-572, https://doi.org/10.1016/j.ecss.2010.02.012.
  • [17] Ferrarin, C., Zaggia, L., Paschini, E., Scirocco, T., Lorenzetti, G., Bajo, M., Penna, P., Francavilla, M., D’Adamo, R., Guerzoni, S., 2013. Hydrological Regime and Renewal Capacity of the Microtidal Lesina Lagoon. Estuar. Coast. 37, 79-93, https://doi.org/10.1007/s12237-013-9660-x.
  • [18] Gasiūnaitė, Z. R., Daunys, D., Olenin, S., Razinkovas, A., 2008. The Curonian Lagoon. In: Schiewer, U. (Ed.), Ecology of Baltic Coastal Waters. Springer, Berlin/Heidelberg, 197-215.
  • [19] Hampton, S. E., Galloway, A. W. E., Powers, S. M., Ozersky, T., Woo, K. H., Batt, R. D., Labou, S. G., O’Reilly, C. M., Sharma, S., Lottig, N. R., Stanley, E. H., North, R. L., Stockwell, J. D., Adrian, R., Weyhenmeyer, G. A., Arvola, L., Baulch, H. M., Bertani, I., Bowman, L. L., Carey, C. C., Catalan, J., Colom-Montero, W., Domine, L. M., Felip, M., Granados, I., Gries, C., Grossart, H. P., Haberman, J., Haldna, M., Hayden, B., Higgins, S. N., Jolley, J. C., Kahilainen, K. K., Kaup, E., Kehoe, M. J., MacIntyre, S., Mackay, A. W., Mariash, H. L., McKay, R. M., Nixdorf, B., Nõges, P., Nõges, T., Palmer, M., Pierson, D. C., Post, D. M., Pruett, M. J., Rautio, M., Read, J. S., Roberts, S. L., Rücker, J., Sadro, S., Silow, E. A., Smith, D. E., Sterner, R. W., Swann, G. E. A., Timofeyev, M. A., Toro, M., Twiss, M. R., Vogt, R. J., Watson, S. B., Whiteford, E. J., Xenopoulos, M. A., 2017. Ecology under lake ice. Ecol. Lett. 20, 98-111, https://doi.org/10.1111/ele.12699.
  • [20] Idzelytė, R., Kozlov, I. E., Umgiesser, G., 2019. Remote Sensing of Ice Phenology and Dynamics of Europe’s Largest Coastal Lagoon (The Curonian Lagoon). Remote Sens 11 (17), art. no. 2059, 27 pp., https://doi.org/10.3390/rs11172059.
  • [21] Jakimavičius, D., 2012. Changes of water balance elements of the Curonian Lagoon and their forecast due to anthropogenic and natural factors. Kaunas University of Technology.
  • [22] Jakimavičius, D., Kriaučiūnienė, J., Šarauskienė, D., 2018. Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia 60 (3), 378-389, https://doi.org/10.1016/j.oceano.2018.02.003.
  • [23] Jakimavičius, D., Šarauskienė, D., Kriaučiūnienė, J., 2019. Influence of climate change on the ice conditions of the Curonian Lagoon. Oceanologia 62 (2), 164-172, https://doi.org/10.1016/J.OCEANO.2019.10.003.
  • [24] Janković, V., Schultz, D. M., 2017. Atmosfear: Communicating the effects of climate change on extreme weather. Weather. Clim. Soc. 9, 27-37, https://doi.org/10.1175/WCAS-D-16-0030.1.
  • [25] Jarmalavičius, D., 2007. Jūrinis krantas. In: Bukantis, A., Šinkūnas, P., Taločkaitė, E. (Eds.), Klimato Kaita: Prisitaikymas Prie Jos Poveikio Lietuvos Pajūryje. Vilniaus Universiteto Leidykla, Vilnius, 25-31.
  • [26] Maicu, F., De Pascalis, F., Ferrarin, C., Umgiesser, G., 2018. Hydrodynamics of the Po River-Delta-Sea System. J. Geophys. Res. 123, 6349-6372, https://doi.org/10.1029/2017JC013601.
  • [27] Mėžinė, J., Ferrarin, C., Vaičiūtė, D., Idzelytė, R., Zemlys, P., Umgiesser, G., 2019. Sediment Transport Mechanisms in a Lagoon with High River Discharge and Sediment Loading. Water 11 (10), art. no. 1970, 24 pp., https://doi.org/10.3390/w11101970.
  • [28] Molinaroli, E., Sarretta, A., Ferrarin, C., Masiero, E., Specchiulli, A., Guerzoni, S., 2014. Sediment grain size and hydrodynamics in Mediterranean coastal lagoons: Integrated classification of abiotic parameters. J. Earth Syst. Sci. 123, 1097-1114, https://doi.org/10.1007/s12040-014-0445-9.
  • [29] Müller, S., Jessen, S., Duque, C., Sebök, E., Neilson, B., Engesgaard, P., 2018. Assessing seasonal flow dynamics at a lagoon saltwater-freshwater interface using a dual tracer approach. J. Hydrol. Reg. Stud. 17, 24-35, https://doi.org/10.1016/j.ejrh.2018.03.005.
  • [30] Nguyen, T. D., Hawley, N., Phanikumar, M. S., 2017. Ice cover, winter circulation, and exchange in Saginaw Bay and Lake Huron. Limnol. Oceanogr. 62, 376-393, https://doi.org/10.1002/lno.10431.
  • [31] Twiss, M. R., Smith, D. E., Cafferty, E. M., Carrick, H. J., 2014. Phytoplankton growth dynamics in offshore Lake Erie during midwinter. J. Great Lakes Res. 40, 449-454, https://doi.org/10.1016/j.jglr.2014.03.010.
  • [32] Umgiesser, G., Canu, D. M., Cucco, A., Solidoro, C., 2004. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J. Marine Syst. 51, 123-145, https://doi.org/10.1016/j.jmarsys.2004.05.009.
  • [33] Umgiesser, G., Zemlys, P., Erturk, A., Razinkovas-Baziukas, A., Mezine, J., Ferrarin, C., 2016. Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing. Ocean Sci. 12, 391-402, https://doi.org/10.5194/os-12-391-2016.
  • [34] Ummenhofer, C. C., Meehl, G. A., 2017. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B Biol. Sci. 372, https://doi.org/10.1098/rstb.2016.0135.
  • [35] Vincent, W. F., 2009. Effects of Climate Change on Lakes. In: Encyclopedia of Inland Waters. Acad. Press, Elsevier, 55-60.
  • [36] Wang, J., Haoguo, H., Schwab, D., Leshkevich, G., Beletsky, D., Hawley, N., Clites, A., 2010. Development of the Great Lakes Ice-circulation Model (GLIM): Application to Lake Erie in 2003-2004. J. Great Lakes Res. 36, 425-436, https://doi.org/10.1016/j.jglr.2010.04.002.
  • [37] Wolanski, E., Day, J. W., Elliott, M., Ramesh, R., 2019. Coasts and Estuaries. Elsevier, Amsterdam, 726 pp.
  • [38] Wotton, R. S., 1995. Temperature, Organic Matter and the Sustainability of Aquatic Systems. Freshw. Forum 5, 39-47.
  • [39] Yuan, R., Zhu, J., 2015. The Effects of Dredging on Tidal Range and Saltwater Intrusion in the Pearl River Estuary. J. Coast. Res. 316, 1357-1362, https://doi.org/10.2112/jcoastres-d-14-00224.1.
  • [40] Žaromskis, R., 1996. Oceans, Seas, Estuaries. Debesija. Vilnius, 293 pp., (in Lithuanian).
  • [41] Zemlys, P., Ertürk, A., Razinkovas, A., 2008. 2D finite element ecological model for the Curonian lagoon. Hydrobiologia 611, 167-179, https://doi.org/10.1007/s10750-008-9452-7.
  • [42] Zemlys, P., Ferrarin, C., Umgiesser, G., Gulbinskas, S., Bellafiore, D., 2013. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipeda Strait using finite element hydrodynamic model. Ocean Sci. 9, 573-584, https://doi.org/10.5194/os-9-573-2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eb490ee-30ac-45e5-a154-6f597b0e295c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.