PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Vibrations of the Euler–Bernoulli Beam Under a Moving Force Based on Various Versions of Gradient Nonlocal Elasticity Theory: Application in Nanomechanics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two models of vibrations of the Euler–Bernoulli beam under a moving force, based on two different versions of the nonlocal gradient theory of elasticity, namely, the Eringen model, in which the strain is a function of stress gradient, and the nonlocal model, in which the stress is a function of strains gradient, were studied and compared. A dynamic response of a finite, simply supported beam under a moving force was evaluated. The force is moving along the beam with a constant velocity. Particular solutions in the form of an infinite series and some solutions in a closed form as well as the numerical results were presented.
Słowa kluczowe
Wydawca
Rocznik
Strony
306--318
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • Faculty of Environmental Engineering and Geodesy, Wroclaw University of Environmental and Life Science, ul. Grunwaldzka 55, 50-357 Wroclaw, Poland
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology pl. Grunwaldzki 11, 50-377 Wroclaw, Poland
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology pl. Grunwaldzki 11, 50-377 Wroclaw, Poland
  • Faculty of Environmental Engineering and Geodesy, Wroclaw University of Environmental and Life Science, ul. Grunwaldzka 55, 50-357 Wroclaw, Poland
Bibliografia
  • [1] A. C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering Science 1972; 10: 1-16.
  • [2] A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science 1972; 5: 425-435.
  • [3] A. C. Eringen, D. G. B. Edelen, On nonlocal elasticity, International Journal of Engineering Science 1972; 3: 233-248.
  • [4] A. C. Eringen, On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 1983; 9: 4703-4710.
  • [5] M. Aydogdu, Axial vibration of the nanorods with the nonlocal continuum rod model, Physica E Low-dimensional Systems Nanostructures 2009; 41(5): 861- 864.
  • [6] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method , Mechanics Research Communications 2012; 39 (1): 23-27.
  • [7] Z. X. Huang, Nonlocal effects of longitudinal vibration in nanorod with internal long range interactions, International Journal of Solid and Structures 2012; 49: 2150-2154.
  • [8] M. Aydogdu, M. Arda, Force vibration of nanorods using nonlocal elasticity, Advances in Nano Research 2016; 4: (4): 265-279.
  • [9] J. Peddieson, G. R. Buchanan, R. P. McNitt, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science 2003; 41: 305-312.
  • [10] J. N. Reddy, Nonlocal theories for bending, buckling and vibration of beam, International Journal of Engineering Science 2007; 45: 288-307.
  • [11] R. Ansari, R. Gholami, H. Rouchi, Vibration analysis of single-walled carbon nanotubes using gradient elasticity theories, Composites: Part B 2012; 43: 2985-2989.
  • [12] M. Aydogdu, A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E 2009; 41: 1651-1655.
  • [13] D. Karličić, T. Murmu, S. Adhikari, M. McCarthy, Non-local Structural Mechanics 2016; WILEY.
  • [14] H. Askes, E. C. Aifantis, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Physical Review B: Condensed Matter and Materials Physics 2009; 80: 1955412.
  • [15] D. Karličić, P. Kozić, R. Pavlović, Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations, Journal of Theoretical and Applied Mechanics, 2015; 53 (1): 217-233.
  • [16] R. Rafie, R. M. Moghadam, On the modeling of carbon nanotubes: A critical review, Composites: Part B 2014; 56: 435- 449.
  • [17] S. I. Yengejeh, S. A. Kazami, A. Ӧchsner, Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review, Composites Part B 2016; 86: 95-107.
  • [18] S. Gopalakrishnan, S. Narendar, Wave Propagation in Nanostructures 2013; Springer.
  • [19] Elishakoff I., Carbon Nanotubes and Nanosensors: Vibration, Buckling and Balistic Impact, ISTE, London and John Wiley & Sons, New York, 2012.
  • [20] K. Kiani, B. Mehri, Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories, Journal of Sound and Vibration 2010;329 (11): 2241–2264.
  • [21] K. Kiani, Application of nonlocal beam models to double walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations, Acta Mechanica 2011; 216: 165–195.
  • [22] K. Kiani, Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part II: parametric study, Acta Mechanica 2011; 216: 197–206.
  • [23] K. Kiani, Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects, Physica E: Low-dimensional Systems and Nanostructures 2010; 42 (9): 2391–2401.
  • [24] K. Kiani, A. Nikkhoo, B. Mehri, Prediction capabilities of classical and shear deformable beam theories excited by a moving mass, Journal of Sound and Vibration 2009; 320: 632–648.
  • [25] K. Kiani, Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory, Journal of Sound and Vibration 2011; 330; 4896-4914.
  • [26] M. Şimşek, Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory, Physica E 2010; 43: 182-191.
  • [27] S.A.H. Hosseini, O. Rahmani, Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory, Meccanica 2017, 52: 1441-1457.
  • [28] M. Pourseifi, O. Rahmami, S.A.H. Hoseini, Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories, Meccanica 2015; 50 (5):1351-1369.
  • [29] B. Mehri, A. Davar, O. Rahmani, Dynamic Green function solution of beams under a moving load with different boundary conditions, Scientia Iranica 2009; 16 (3): 273-279.
  • [30] G. Szefer, D. Jasińska, Continuum molecular modelling of nanostructured materials, 2010, 189-201, in Alberts (eds.) Continuous Media with Microstructure, Springer, Berlin, Heidelberg.
  • [31] G. Szefer, Molecular modeling of stresses and deformations in nanostructured materials, International Journal of Applied Mathematics and Computer Science, 2004; 14 (4): 541-548.
  • [32] Y. Shirai, J.F. Morin, T. Sasaki, J.M. Guerrero, J.M. Recent progress on nanovehicles, Chemical Society Reviews 2006; 35 (11): 1043-1055.
  • [33] R. Lipowsky, S. Klumpp, “Life is motion”: multiscale motility of molecular motors, Physica A- Statistical Mechanics and its Applications 2005; 352 (1): 53-112.
  • [34] L. Fryba, Vibration of Solids and Structures under Moving Loads, Telford, London, 1999.
  • [35] G. Romano, R. Barretta, Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams, Composite Part B: Engineering 2017; 114: 184-188.
  • [36] E.C. Aifantis, On the role of gradients in the localization of deformation and fracture, International Journal of Engineering Science, 1992, 30, 1279-1299.
  • [37] E.C. Aifantis, Gradient deformation models at nano, micro, and macro scales, Journal of Engineering Materials and Technology, ASCE, 1999, 121, April, 189-202.
  • [38] E.C. Aifantis, On the gradient approach- Relation to Eringen’s nonlocal theory, International Journal of Engineering Science 2011; 49: 1367-1377.
  • [39] C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 2015, 78, 298-313.
  • [40] J. Fernandez-Saez, R. Zaera, J.A. Loya, J.N. Reddy, Bending of Euler-Bernoulli beams using Eringen’s integral formulation: A paradox resolved, International Journal of Engineering Science 2016; 99: 107-116.
  • [41] P. Śniady, Dynamic response of a Timoshenko beam to a moving force, Journal of Applied Mechanics, ASME 2008; 75: 024503-1-024503-4.
  • [40] J. Rusin, P. Śniady, P. Śniady, Vibrations of double-string complex system under moving force. Closed solutions, Journal of Sound and Vibration 2011; 330: 404-415.
  • [41] K. Misiurek, P. Śniady, Vibrations of sandwich beam due to a moving force, Composite Structures 2013; 104: 85-93.
  • [42] P. Śniady, M. Podwórna, R. Idzikowski, Stochastic vibrations of the Euler-Bernoulli beam based on various versions of the gradient nonlocal elasticity theory, Probabilistic Engineering Mechanics 2019; 56: 27-34.
Uwagi
1. Błędna numeracja w bibliografii.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eb38dd0-4367-494c-b100-30e73ff120df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.