PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water Vapor Permeability through PAN Nanofiber Mat with Varying Membrane-Like Areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przepuszczalność pary wodnej maty z nanowłókien PAN z obszarami membranopodobnymi
Języki publikacji
EN
Abstrakty
EN
Electrospinning can be used to create nanofiber mats from diverse polymers which can be used as filters etc. Depending on the spinning parameters, also nano-membranes, i.e. non-fibrous mats, can be produced as well as mixtures from both morphologies. The ratio of membrane to fibrous areas can be tailored by the distance between the high voltage electrode and substrate. Here the impact of the mat morphology on the water vapour permeability through polyacrylonitrile nanofiber mats with different membrane-like areas is shown, allowing for tailoring the permeability between 0.1 Pa m²/W and more than 10 Pa m²/W. In this way it is possible to create the finest filters as well as nearly impenetrable thin membranes with the same technology.
PL
Elektroprzędzenie można stosować do tworzenia mat z nanowłókien z różnorodnych polimerów, które mogą być stosowane jako filtry itp. W zależności od parametrów przędzenia, można wytwarzać także nanobłonki, tj. maty niewłókniste, jak również ich hybrydy. Stosunek powierzchni membrany do części włóknistej może być regulowany przez odległość między elektrodą wysokiego napięcia a podłożem. W pracy pokazano wpływ morfologii maty na przepuszczalność pary wodnej poprzez poliakrylonitrylowe maty z nanowłókien z obszarami membranopodobnymi, pozwalając dostosować przepuszczalność między 0,1 Pa·m²/W i ponad 10 Pa·m²/W. Dzięki temu sposobowi możliwe jest tworzenie najlepszych filtrów, a także prawie nieprzeniknionych cienkich membran z zastosowaniem tej samej technologii.
Rocznik
Strony
12--15
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Department of Chemical Engineering, University of Malaga, Andalucía Tech, Málaga, Spain
  • Working Group of Textile Technologies, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
autor
  • Technical University of Liberec, Liberec, Czech Republic
  • Department of Chemical Engineering, University of Malaga, Andalucía Tech, Málaga, Spain
  • Department of Chemical Engineering, University of Malaga, Andalucía Tech, Málaga, Spain
  • Working Group of Textile Technologies, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
Bibliografia
  • 1. Kenawy E R, Layman J M, Watkins J R, Bowlin G L, Matthews J A, Simpson D G and Wnek G E. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers, Biomaterials. 2003; 24(6): 907-913.
  • 2. Deitzel J M, Kleinmeyer J D, Hirvonen J K, and Beck Tan N C. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 2001 42(19): 8163-8170.
  • 3. Reneker D H and Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996; 7: 216-223.
  • 4. Larrondo L, Manley R S J. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 1981; 19: 909- 920.
  • 5. Grothe T, Brikmann J, Meissner H, Ehrmann A. Needleless electrospinning of poly(ethylene oxide). Materials Science 2017; 23(4): 342-349.
  • 6. Koombhongse S, Liu W, Reneker D H. Flat ribbons and other shapes by electrospinning. J Polym Sci, Polym Phys Ed 2001; 39: 2598-2606.
  • 7. Frenot A, Chronakis I S. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science 2003; 8: 64-75.
  • 8. Grothe T, Großerhode C, Hauser T, Kern P, Stute K, Ehrmann A. Needleless electrospinning of PEO nanofiber mats. Advances in Engineering Research 2017; 102: 54- 58.
  • 9. Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning. Polymer 1999; 40: 4585-4592.
  • 10. Grimmelsmann N, Homburg S V, Ehrmann A. Electrospinning chitosan blends for nonwovens with morphologies between nanofiber mat and membrane. IOP Conference Series: Materials Science and Engineering 2017; 213, no. 012007.
  • 11. Grimmelsmann N, Homburg S V, Ehrmann A. Needleless electrospinning of pure and blended chitosan. IOP Conference Series: Materials Science and Engineering 2017; 225, no. 012098.
  • 12. Yalcinkaya F, Yalcinkaya B, Jirsak O. Dependent and Independent Parameters of Needleless Electrospinning, Electrospinning – Material, Techniques and Biomedical Applications 2016; pp. 67-93.
  • 13. Sabantina L, Mirasol J R, Cordero T, Finsterbusch K and Ehrmann A. Investigation of Needleless Electrospun PAN Nanofiber Mats. AIP Conference Series 2017; 1952, 020085.
  • 14. Niu H T, Wang X G, Lin T. Needleless electrospinning: influences of fibre generator geometry. Journal of the Textile Institute 2012; 103: 787-794.
  • 15. Wang W, Qiang W, Dai H C. Impact Mechanisms of Needleless Electrospinning Spinneret Geometry on Electric Field Distribution Regularities. Chemical Journal of Chinese Universities 2017; 38: 982-989.
  • 16. Yang W X, Liu Y B, Zhang L G, Cao H, Wang Y, Yao J B. Optimal spinneret layout in Von Koch curves of fractal theory based needleless electrospinning process. AIP Advances 2016; 6, 065223.
  • 17. Zhou F-L, Gong R-H, Porat I. Needle and Needleless Electrospinning for Nanofibers. Journal of Applied Polymer Science 2010; vol 115: 2591-2598.
  • 18. Niu H T, Lin T, Wang X G. Needleless Electrospinning. I. A Comparison of Cylinder and Disk Nozzles. Journal of Applied Polymer Science 2009; 114: 3524-3530.
  • 19. Pathalamuthu P, Shahana S T, Nivedha U, Siddharthan A, Giridev V R. FIBRES & TEXTILES in Eastern Europe 2017; 25, 3(123): 53-61. Nr DOI: 10.5604/01.3001.0010.1689.
  • 20. Krucinska I, Komisarczyk A, Chrzanowski M, Gliscinska E, Wrzosek H., Electrostatic Field in Electrospinning with a Multicapillary Head – Modelling and Experiment. FIBRES & TEXTILEs in Eastern Europe 2009; 17, 3(74): 38-44.
  • 21. Kleivaite V, Milasius R. Electrospinning – 100 years of investigations and still open questions of web structure estimination. AUTEX Research Journal 2018, online first.
  • 22. Carnell L S, Siochi E J, Wincheski R A, Holloway N M, Clark R L. Electric field effects on fiber alignment using an auxiliary electrode during electrospinning. Scripta Materialia 2009; 60: 359-361.
  • 23. Thompson C J, Chase G G, Yarin A L, Reneker D H. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007; 487: 6913-6922.
  • 24. Zheng Y, Xie S, Zeng Y. Electric field distribution and jet motion in electrospinning process: from needle to hole. Journal of Materials Science 2013; 48: 6647-6655.
  • 25. Yang Y, Jia Z, Liu J, Li Q, Hou L, Wang L, Guan Z. Effect of electric field distribution uniformity on electrospinning. Journal of Applied Physics 2008; 103, 104307.
  • 26. Theron S A, Yarin A L, Zussman E, Kroll E. Multiple jets in electrospinning: experiment and modeling. Polymer 2005; 46: 2889-2899.
  • 27. Firych-Nowacka A, Smólka K, Wiak S, Gliscinska E, Kricinska I, Chrzanowski M. 3- dimensional computer model of electrospinning multicapillary unit used for electrostatic field analysis. Open Physics 2017; 15: 1049–1054.
  • 28. Cernohorsky M, Semerak P, Ticha P, Havrlik M. Measuring of Water Vapour Diffusion of Nanofibre Textiles, 8th International Conference on Nanomaterials – Research & Application 2017; 319-323.
  • 29. Hong K A, Yoo H S, Kim E. Effect of waterborne polyurethane coating on the durability and breathable waterproofing of electrospun nanofiber web-laminated fabrics. Text. Res. J. 2015; 85(2): 160-170.
  • 30. Sun A C, Kosar W, Zhang Y F, Feng X S. Vacuum membrane distillation for desalination of water using hollow fiber membranes. Journal of Membrane Science 2014; 455: 131- 142.
  • 31. Huang L, Manickam S S, McCutcheon J R. Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor. Journal of Membrane Science 2013; 436: 213-220.
  • 32. Shimada N, Mori T, Ito A, Yamaguchi S, Nakane K, Haraguchi M, Ozawa M, Ogata N., Structure and Physical Properties of Polyurethane/Fluorinated Hyper Branched Polymer Nanofiber Mat, Sen-I Gakkaishi 2012; 68(10): 269-275.
  • 33. Yoon B, Lee S. Designing Waterproof Breathable Materials Based on Electrospun Nanofibers and Assessing the Performance Characteristics. Fibers and Polymers 2011; 12(1): 57-64.
  • 34. Hes L. Araujo M. Simulation of the Effect of Air Gaps between the Skin and a Wet Fabric on Resulting Cooling Flow. Textile Research Journal 2010; 80: 1488-1497.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eb1ec06-041c-4609-950d-e084aadd4246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.