Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The nanoparticles of CH3NH3PbBr3 hybrid perovskites were synthesized. These perovskite nanoparticles we embedded in polymethyl methacrylate (PMMA) in order to obtain the composite, which we used as light converter for silicon solar cells. It was shown that the composite emit the light with the intensity maximum at about 527 nm when exited by a short wavelength (300÷450 nm) of light. The silicon solar cells were used to examine the effect of down-conversion (DC) process by perovskite nanoparticles embedded in PMMA. For experiments, two groups of monocrystalline silicon solar cells were used. The first one included the solar cells without surface texturization and antireflection coating. The second one included the commercial cells with surface texturization and antireflection coating. In every series of the cells one part of the cells were covered by composite (CH3NH3PbBr3 in PMMA) layer and second part of cells by pure PMMA for comparison. It was shown that External Quantum Efficiency EQE of the photovoltaic cells covered by composite (CH3NH3PbBr3 in PMMA) layer was improved in both group of the cells but unfortunately the Internal Quantum Efficiency was reduced. This reduction was caused by high absorption of the short wavelength light and reabsorption of the luminescence light. Therefore, the CH3NH3PbBr3 perovskite nanoparticles embedded in PMMA matrix were unable to increase silicon solar cell efficiency in the tested systems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1733--1739
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
autor
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
autor
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
autor
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
autor
- Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
autor
- Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
- [1] P. Gao, M. Gratzel and M. K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).
- [2] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
- [3] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 499, 316 (2013).
- [4] M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013).
- [5] D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2014).
- [6] M.A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovolt: Res. Appl. 23, 805 (2015).
- [7] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013).
- [8] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013).
- [9] Q. Chen, H. Zhou, Z. Hong, S.Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136, 622 (2014).
- [10] S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, L. Galmiche, Acta Materialia 57, 3301 (2009).
- [11] M. Era, K. Maeda, T. Tsutsui, Thin Solid Films 331, 285 (1998).
- [12] M. Era, S. Morimoto, T. Tsutsui, S. Saito, Appl. Phys. Lett. 65, 676 (1994).
- [13] T. Hattori, T. Taira, M. Era, T. Tsutsui, S. Saito, Chem. Phys. Lett. 254, 103 (1996).
- [14] Y. Li, G. Zheng, C. Lin, J. Lin, Solid State Sciences 9, 855 (2007).
- [15] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 53, 1(2014).
- [16] L. C. Schmidt, A. Pertegas, S. Gonzalez-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink, R. E. Galian, J. Perez-Prieto, J. Am. Chem. Soc. 136, 850 (2014).
- [17] S. Gonzalez-Carrero, R. E. Galian J. Perez-Prieto, J. Mater. Chem. A 3, 9187 (2015).
- [18] W. Shockley, H.J. Queeisser, J. Appl. Phys. 32, 510 (1961).
- [19] T. Trupke, M. Green, P. Wurfel, J. Appl. Phys. 92, 1668 (2002).
- [20] V. Svrcek, A. Slaoui, J. Muller, Thin Solid Films 451-452, 384 (2004).
- [21] B. S. Richards, Sol. Energy Mater. Sol. Cells 90, 2329 (2006).
- [22] V. Badescu, A. De Vos, A.M. Badescu, A. Szymanska, J Phys D: Appl Phys. 40, 341 (2007).
- [23] X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 42, 173 (2013).
- [24] K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, B. S. Richards, Prog. Photovolt: Res. Appl. 17, 191 (2009).
- [25] S.-M. Liu, W. Chen, Z.-G. Wang, J. Nanosci. Nanotechnol. 10, 1418 (2010).
- [26] P. Panek, M. Lipiński, E. Bełtowska-Lehman, K. Drabczyk, R. Ciach, Opto-Electronics Review 11, 269 (2003).
- [27] J. Lábár, Microsc. Microanal. 18, 406 (2012).
- [28] F. Demichelis, G. Kaniadakis, A. Tagliaferro, E. Tresso, Appl. Opt. 26, 1737 (1987).
Uwagi
EN
1. This work was supported by the Polish National Science Centre under the grant No. DEC-2012/05/B/ST8/00087.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7eaa594b-6b7b-4665-b80d-532fc6ae550a