PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Phase retrieval without phase unwrapping for white blood cells in deep-learning phase-shifting digital holography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phase retrieval and phase unwrapping are the two important problems for enabling quantitative phase imaging of cells in phase-shifting digital holography. To simultaneously cope with these two problems, a deep-learning phase-shifting digital holography method is proposed in this paper. The proposed method can establish the continuous mapping function of the interferogram to the ground-truth phase using the end-to-end convolutional neural network. With a well-trained deep convolutional neural network, this method can retrieve the phase from one-frame blindly phase-shifted interferogram, without phase unwrapping. The feasibility and applicability of the proposed method are verified by the simulation experiments of the microsphere and white blood cells, respectively. This method will pave the way to the quantitative phase imaging of biological cells with complex substructures.
Słowa kluczowe
Czasopismo
Rocznik
Strony
127--140
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Centre of Information Technology, Changzhou Vocational Institute of Mechatronic Technology, Changzhou 213164, Jiangsu, China
autor
  • Institute of Mold Technology, Changzhou Vocational Institute of Mechatronic Technology, Changzhou 213164, Jiangsu, China
autor
  • Institute of Mold Technology, Changzhou Vocational Institute of Mechatronic Technology, Changzhou 213164, Jiangsu, China
autor
  • Institute of Mold Technology, Changzhou Vocational Institute of Mechatronic Technology, Changzhou 213164, Jiangsu, China
Bibliografia
  • [1] YAQOOB Z., PSALTIS D., FELD S., YANG C., Optical phase conjugation for turbidity suppression in biological samples, Nature Photonics 2(2), 2008: 110–115, DOI: 10.1038/nphoton.2007.297.
  • [2] XU X., WANG Y., JI Y., XU Y., XIE M., HAN H., A novel dual-wavelength iterative method for generalized dual-wavelength phase-shifting interferometry with second-order harmonics, Optics and Lasers in Engineering 106, 2018: 39–46, DOI: 10.1016/j.optlaseng.2018.02.007.
  • [3] XU X., WANG Y., XU Y., JIN W., Simultaneous measurement of refractive index and thickness for optically transparent object with a dual-wavelength quantitative technique, Optica Applicata 46(4), 2016: 597–605, DOI: 10.5277/oa160407.
  • [4] BHADURI B., POPESCU G., Derivative method for phase retrieval in off-axis quantitative phase imaging, Optics Letters 37(11), 2012: 1868–1870, DOI: 10.1364/OL.37.001868.
  • [5] POPESCU G., Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill, 2011.
  • [6] VARGAS J., QUIROGA J.A., SORZANO C.O.S., ESTRADA J.C., CARAZO J.M., Two-step demodulation based on the Gram–Schmidt orthonormalization method, Optics Letters 37(3), 2012: 443–445, DOI: 10.1364/OL.37.000443.
  • [7] YAMAGUCHI I., ZHANG T., Phase shifting digital holography, Optics Letters 22(16), 1997: 1268–1270, DOI: 10.1364/OL.22.001268.
  • [8] WANG Z., HAN B., Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms, Optics Letters 29(14), 2004: 1671–1673, DOI: 10.1364/OL.29.001671.
  • [9] KEMPER B., VON BALLY G., Digital holographic microscopy for live cell applications and technical inspection, Applied Optics 47(4), 2008: A52–A61, DOI: 10.1364/AO.47.000A52.
  • [10] ZHAO M., HUANG L., ZHANG Q., SU X., ASUNDI A., KEMAO Q., Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies, Applied Optics 50(33), 2011: 6214–6224, DOI: 10.1364/AO.50.006214.
  • [11] LO C.F., PENG X., CAI L., Surface normal guided method for two-dimensional phase unwrapping, Optik 113(9), 2002: 439–447, DOI: 10.1078/0030-4026-00183.
  • [12] GASS J., DAKOFF A., KIM M.K., Phase imaging without 2π ambiguity by multiwavelength digital holography, Optics Letters 28(13), 2003: 1141–1143, DOI: 10.1364/OL.28.001141.
  • [13] WAGNER C., OSTEN W., SEEBACHER S., Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring, Optical Engineering 39(1), 2000: 79–85, DOI: 10.1117/1.602338.
  • [14] QIU X., ZHONG L., XIONG J., ZHOU Y., TIAN J., LI D., LU X., Phase retrieval based on temporal and spatial hybrid matching in simultaneous phase-shifting dual-wavelength interferometry, Optics Express 24(12), 2016: 12776–12787, DOI: 10.1364/OE.24.012776.
  • [15] CYBENKO G., Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems 2(4), 1989: 303–314, DOI: 10.1007/BF02551274.
  • [16] LECUN Y., BENGIO Y., HINTON G., Deep learning, Nature 521, 2015: 436–444, DOI: 10.1038/nature14539.
  • [17] NGUYEN T., BUI V., LAM V., RAUB C.B., CHANG L.C., NEHMETALLAH G., Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection, Optics Express 25(13), 2017: 15043–15057, DOI: 10.1364/OE.25.015043.
  • [18] WU Y., RIVENSON Y., ZHANG Y., WEI Z., GUNAYDIN H., LIN X., OZCAN A., Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery, Optica 5(6), 2018: 704–710, DOI: 10.1364/OPTICA.5.000704.
  • [19] SHIMOBABA T., TAKAHASHI T., YAMAMOTO Y., ENDO Y., SHIRAKI A., NISHITSUJI T., HOSHIKAWA N., KAKUE T., ITO T., Digital holographic particle volume reconstruction using a deep neural network, Applied Optics 58(8), 2019: 1900–1906, DOI: 10.1364/AO.58.001900.
  • [20] ZHANG G., GUAN T., SHEN Z., WANG X., HU T., WANG D., HE Y., XIE N., Fast phase retrieval in off-axis digital holographic microscopy through deep learning, Optics Express 26(15), 2018: 19388–19405, DOI: 10.1364/OE.26.019388.
  • [21] RIVENSON Y., ZHANG Y., GUNAYDIN H., TENG D., OZCAN A., Phase recovery and holographic image reconstruction using deep learning in neural networks, Light: Science & Applications 7, 2018: 17141–17149, DOI: 10.1038/lsa.2017.141.
  • [22] WANG H., LYU M., SITU G., eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction, Optics Express 26(18), 2018: 22603–22614, DOI: 10.1364/OE.26.022603.
  • [23] WANG K., LI Y., KEMAO Q., DI J., ZHAO J., One-step robust deep learning phase unwrapping, Optics Express 27(10), 2019: 15100–15115, DOI: 10.1364/OE.27.015100.
  • [24] XU X., XIE M., JI Y., WANG Y., Dual-wavelength interferogram decoupling method for three-frame generalized dual-wavelength phase-shifting interferometry based on deep learning, Journal of the Optical Society of America A 38(3), 2021: 321–327, DOI: 10.1364/JOSAA.412433.
  • [25] XU X., XIE M., CHEN S., JI Y., WANG Y., Interferogram blind denoising using deep residual learning for phase-shifting interferometry, Optica Applicata 52(1), 2022: 101–116, DOI: 10.37190/oa220108.
  • [26] FALK T., MAI D., BENSCH R., CICEK O., ABDULKADIR A., MARRAKCHI Y., BOHM A., DEUBNER J., JACKEL Z., SEIWALD K., DOVZHENKO A., TIETZ O.I., BOSCO C. D., WALSH S., SALTUKOGLU D., TAY T.L., PRINZ M., PALME K., SIMONS M., DIESTER I., BROX T., RONNEBERGER O., U-Net: deep learning for cell counting, detection, and morphometry, Nature Methods 16, 2019: 67–70, DOI: 10.1038/s41592-018-0261-2.
  • [27] KINGMA D.P., BA J., Adam: A method for stochastic optimization, 2017, http://arxiv.org/abs/1412.6980.
  • [28] WANG Z., BOVIK A.C., SHEIKH H.R., SIMONCELLI E.P., Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing 13(4), 2004: 600–612, DOI: 10.1109/TIP.2003.819861.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ea7746c-f975-43f8-8ae7-f9a5eb67ee18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.