PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of a molecular sieve for drying the insulation system of a power transformer in terms of improving its perational reliability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The first research objective was the assessment of the selectivity of water and hydrogen adsorption by the 3A molecular sieve (MS) in the terms of the safety of using the DGA (Dissolved Gas Analysis) method as a diagnostic technique. The second objective was to demonstrate the efficiency of drying the insulation system consisting of cellulose insulation impregnated with various insulating liquids in terms of improving safety and extending the service life of power transformers. In order to achieve the assumed objectives, measurement systems were prepared and material tests were carried out, based mainly on chromatographic analyzes and measurements of water content using the Karl Fischer titration method. On the basis of the obtained test results and the conducted physical analyzes, the selectivity of MS sorption was shown and it was explained that the facilitator of the adsorption of water molecules is their polar nature related to their large dipole moment. The high efficiency of drying cellulose insulation impregnated with various insulating liquids using MS was also demonstrated.
Rocznik
Strony
502--509
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Institute of Electric Power Engineering, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Poznan University of Technology, Institute of Electric Power Engineering, ul. Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • 1. Atanasova-Höhlein I et al. Experience with capacitive on-line sensors for moisture evaluation in transformer insulation. IEEE Electrical Insulation Magazin March-April 2019; 35 (2): 18-26, http://dx.doi.org/10.1109/MEI.2019.8636102.
  • 2. Bharat Heavy Electrical Limited. Transformers: Design, Manufacturing, and Materials (Professional Engineering), 1st ed. New York, NY, USA, McGraw-Hill Education: 2004.
  • 3. Bosigner J. The use of low frequency heating techniques in the insulation drying process for liquid filled small power transformers. In Proceedings of the 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Atlanta, GA, USA, Developing New Perspectives, 2 November 2001: 688-692, http://doi.org/10.1109/TDC.2001.971322.
  • 4. Cigré Brochure 323, Aging of Cellulose in mineral-oil insulated transformers, 2007.
  • 5. Cigré Brochure 349, Moisture Equilibrium and Moisture Migration within Transformer Insulation Systems, 2008.
  • 6. Cigre Brochure 436, Experiences in Service with New Insulating Liquids, 2010.
  • 7. Cybulski M, Przybylek P. Application of Molecular Sieves for Drying Transformers Insulated with Mineral Oil, Natural Ester, or Synthetic Ester. Energies 2021; 14 (6): 1719, http://doi.org/10.3390/en14061719.
  • 8. Daemisch G. Online - Transformatortrocknung - Unnötig - gefährlich - notwendig? Elektrizitätswirtschaft 2000; 22: 46-50.
  • 9. Dombek G, Nadolny Z. Liquid kind, temperature, moisture, and ageing as an operating parameters conditioning reliability of transformer cooling system. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (3): 413-417, https://doi.org/10.17531/ein.2016.3.13.
  • 10. Fofana I, Wasserberg V, Borsi H, Gockenbach E, Farzaneh M. Drying of transformer insulation using zeolite. IEEE Electr. Insul. Mag. 2004; 20: 20-30, http://doi.org/10.1109/MEI.2004.1266362.
  • 11. Greenspan L. Humidity Fixed Points of Binary Saturated Aqueous Solutions. Journal of Research of the National Buerau of Standards - A, Physics and Chemistry 1977; 81A (1): 89-96, https://doi.org/10.6028/jres.081A.011.
  • 12. Hasterman Z, Mosinski F, Maliszewski A. Electric Strength of Power Transformer. Warsaw, Poland, Wydawnictwo Naukowo-Techniczne: 1983 (In Polish).
  • 13. IEC 60814. Insulating Liquids-Oil-Impregnated Paper and Pressboard-Determination of Water by Automatic Coulometric Karl Fischer Titration. New York, NY, USA, International Electrotechnical Commission (IEC): 1997.
  • 14. Koestinger P, Aronsen E, Boss P, Rindlisbacher G. Practical Experience with the Drying of Power Transformers in the Field, Applying the LFH Technology. Paris, France, International Council on Large Electric Systems (CIGRE): 2004.
  • 15. Lelekakis N, Martin D, Guo W, Wijaya J, Lee M. A field study of two online dry-out methods for power transformers. IEEE Electrical Insulation Magazine May-June 2012; 28 (3): 32-39, http://doi.org/10.1109/MEI.2012.6192365.
  • 16. Liu Y, Chao N, Zhao T, Tong Y, Jia C. Mechanism and numerical model of bubble effect in oil-paper insulation based on microtubule model. IEEE Transactions on Dielectrics and Electrical Insulation Oct. 2020; 27 (5): 1529-1537, http://doi.org/10.1109/TDEI.2020.008744.
  • 17. Moser H P, Dahinden V. Transformerboard II. Rapperswil, H. Weidmann AG: 1987.
  • 18. Nelson Ralph D, Lide David R, Maryott Arthur A. Selected values of electric dipole moments for molecules in the gas chase. National Standard Reference Data Series: 1967, https://doi.org/10.6028/NBS.NSRDS.10.
  • 19. Oommen T. V, Prevost T. A. Cellulose insulation in oil-filled power transformers: part II maintaining insulation integrity and life. IEEE Electrical Insulation Magazine 2006; 22 (2): 5-14, http://doi.org/10.1109/MEI.2006.1618996.
  • 20. Prosiński S. Chemia drewna. Warszawa, Państwowe Wydawnictwo Rolnicze i Leśne: 1984.
  • 21. Przybylek P. A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer. Energies 2018; 11(7): 1658, https://doi.org/10.3390/en11071658.
  • 22. Przybylek P. Water saturation limit of insulating liquids and hygroscopicity of cellulose in aspect of moisture determination in oil-paper insulation. IEEE Trans. Dielectr. Electr. Insul. 2016, 23: 1886-1893, http://doi.org/10.1109/TDEI.2016.005627.
  • 23. Przybyłek P, Gielniak J. Concentration analysis of gases formed in mineral oil, natural ester, and synthetic ester by discharges of high energy. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (3): 435-442, http://doi.org/10.17531/ein.2018.3.12.
  • 24. Przybyłek P. Badania temperatury inicjacji efektu bąbelkowania w izolacji papier-olej. Przegląd Elektrotechniczny 2010; 11b: 166-169.
  • 25. Sarbak Z. Nieorganiczne materiały nanoporowate. Poznań, Wydawnictwo Naukowe UAM: 2009.
  • 26. Sikorski W, Walczak K, Przybylek P. Moisture Migration in an Oil-Paper Insulation System in Relation to Online Partial Discharge Monitoring of Power Transformers. Energies 2016; 9(12): 1082, https://doi.org/10.3390/en9121082.
  • 27. Sircar S, Myers A L. Gas Separation by Zeolites. Handbook of Zeolite Science and Technology 2003, https://doi.org/10.1201/9780203911167. ch22.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ea40e1b-e201-4463-8863-827c68f500c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.