Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The rise of Wireless Sensor Networks (WSN) has redefined the modern digital infrastructure by enabling real-time sensing, decision making, and automation across diverse sectors. However, this rapid evolution has introduced unprecedented security challenges due to constrained computational resources, heterogeneous device environments, and wide-scale deployment of IoT nodes. This research provides a comprehensive review of lightweight and scalable security mechanisms tailored for wireless IoT systems, with a focus on practical deployment realities. It begins by outlining the security requirements and architectural constraints specific to IoT devices and then evaluates the security capabilities and vulnerabilities of commonly used wireless communication protocols. Emphasis is placed on the limitations of current implementations and protocol-level security inconsistencies. To address these gaps, the paper explores lightweight cryptographic techniques, particularly the NIST-approved Ascon algorithm suite, assessing its adaptability to resource-constrained environments. The discussion extends into scalable key management mechanisms and then investigates the challenges of large-scale deployment. It concludes by identifying future research areas that integrates security within broadersystem goals.
Rocznik
Tom
Strony
33
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- independent researcher, Poland
autor
- Warsaw University of Technology, Poland
Bibliografia
- [1] D. Migwi, “Trusted computing in the internet of things securing the edge through hardware-enforced trust,” ELEKTRONIKA - KONSTRUKCJE TECHNOLOGIE ZASTOSOWANIA, vol. 1, pp. 35-42, 05 2025.
- [2] J. Zhang, T. Duong, R. Woods, and A. Marshall, “Securing wireless communications of the internet of things from the physical layer, an overview,” Entropy, vol. 19, p. 420, 08 2017.
- [3] S. Pawar, “Iot attack surge: Threats and security solutions — ec-council,” Cybersecurity Exchange, 07 2024. [Online]. Available: https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/the-rise-of-iot-attacks-endpoint-protection-via-trending-technologies/
- [4] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “Demystifying iot security: An exhaustive survey on iot vulnerabilities and a first empirical look on internet-scale iot exploitations,” IEEE Communications Surveys & Tutorials, vol. 21, pp. 2702-2733, 2019.
- [5] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, “Fog computing for the internet of things: Security and privacy issues,” IEEE Internet Computing, vol. 21, pp. 34-42, 03 2017.
- [6] A. Bhavsar, “A guide for selecting the right microcontroller for your iot project,” IIoT World, 02 2018. [Online]. Available: https://www.iiot-world.com/industrial-iot/connected-industry/a-guide-for-selecting-the-right-microcontroller-for-your-iot-project/
- [7] S. Meltem, K. Turan, D. Mckay, J. Chang, J. Kang, and Kelsey, “Nist special publication 800 nist sp 800-232 ipd ascon-based lightweight cryptography standards for constrained devices authenticated encryption, hash, and extendable output functions initial public draft,” Ascon-Based Lightweight Cryptography Standards for Constrained Devices, 11 2024. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-232.ipd.pdf
- [8] G. Sharma, S. Bala, and A. Verma, “Extending certificateless authentication for wireless sensor networks: A novel insight,” IJCSI International Journal of Computer Science Issues, vol. 10, pp. 167-172, 11 2013. [Online]. Available: https://ijcsi.org/papers/IJCSI-10-6-1-167-172.pdf
- [9] A. Čolaković, A. Hasković Džubur, and B. Karahodža, “Wireless communication technologies for the internet of things,” Science, Engineering and Technology, vol. 1, pp. 1-14, 04 2021.
- [10] G. Hardesty, “Iot (internet of things) wireless pro-tocols and their frequency bands,” Data-alliance.net, 05 2024. [Online]. Available: https://www.data-alliance.net/blog/iot-internet-of-things-wireless-protocols-and-their-frequency-bands/
- [11] T. Carpenter, “Ieee 802.15.4 for iot: Power-efficient networking for wireless deployments,” Cwnp.com, 04 2025. [Online]. Available: https://www.cwnp.com/ieee-802.15.4-wireless-iot-powerhouse-network-managers/
- [12] N. S. B.V., “A powerful mix of security, privacy & trust for nfc in today’s iot these highly secure and remarkably powerful nfc tags protect data while enabling advanced functionality, so businesses can introduce smart, digitally connected products for trusted applications at scale. nxp ® ntag ® 424 dna — nxp ntag 424 dna tagtamper secure nfc tags ntag 424 dna — ntag 424 dna tagtamper,” 10 2019. [Online]. Available: https://www.nxp.com/docs/en/brochure/NTAG424 BROCHURE.pdf
- [13] Bluetooth: with low energy comes low security, vol. WOOT’13, Proceedings of the 7th USENIX Conference on Offensive Technologies. USENIX Association, 08 2013. [Online]. Available: https://www.usenix.org/system/files/conference/woot13/woot13-ryan.pdf
- [14] T. ZIllner, “Zigbee exploited - the good, the bad and the ugly,” 08 2015. [Online]. Available: https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
- [15] NEWRACOM, “Wi-fi halow is easy to adopt,” Newracom.com, 12 2022. [Online]. Available: https://newracom.com/blog/wi-fi-halow-is-easy-to-adopt
- [16] J. Shepard, “How does 5g help secure edge connectivity?” 5G Technology World, 12 2024. [Online]. Available: https://www.5gtechnologyworld.com/how-does-5g-help-secure-edge-connectivity/
- [17] GSMA, “Security features of lte-m and nb-iot networks,” Mobile IoT Security Report, 09 2019. [Online]. Available: https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/wp-content/uploads/2019/09/ Security-Features-of-LTE-M-and-NB-IoT-Networks.pdf
- [18] A. Mohamed, F. Wang, I. Butun, J. Qadir, R. Lagerstr¨om, P. Gastaldo, and D. D. Caviglia, “Enhancing cyber security of lorawan gateways under adversarial attacks,” Sensors, vol. 22, p. 3498, 01 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/9/3498/htm
- [19] M. Katagi and S. Moriai, “Lightweight cryptogra-phy for the internet of things,” 05 2012. [On-line]. Available: https://www.researchgate.net/publication/267246530 Lightweight Cryptography for the Internet of Things
- [20] R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key management systems for sensor networks in the context of the internet of things,” Computers & Electrical Engineering, vol. 37, p. 147-159, 03 2011. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0045790611000176?via%3Dihub
- [21] S. Team, “Rsa, dsa and ecc encryption differences,” Sectigo® Official, 01 2021. [Online]. Available: https://www.sectigo.com/resource-library/rsa-vs-dsa-vs-ecc-encryption
- [22] M. El-Hajj and P. Beune, “Lightweight public key infrastructure for the internet of things: A systematic literature review,” Journal of Industrial Information Integration, vol. 41, p. 100670, 08 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2452414X24001158
- [23] S. Al-Riyami and K. Paterson, “Certificateless public key cryptography *,” 2003. [Online]. Available: https://eprint.iacr.org/2003/126.pdf
- [24] P. Nikbakht Bideh, “Lmgroup: A lightweight multicast group key management for iot networks,” Lecture Notes in Computer Science, pp. 213-230, 2022.
- [25] M. Goworko and J. Wytrebowicz, “A secure communication system for constrained iot devices—experiences and recommendations,” Sensors, vol. 21, p. 6906, 10 2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ea17ced-1388-475a-9526-574bfd354f01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.